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Hello, welcome to the NPTEL online certification course on Deep Learning. So, in our

previous lecture, we have started discussion on some of the popular convolutional neural

network architectures. So, we have talked about LeNet 5 and we said that the LeNet 5

was a  network which was used in  earlier  days by different  banks for automation  of

recognition of the numerical values written in the bank cheques.

(Refer Slide Time: 01:05)

And  then  we  had  introduced  one  challenge  which  is  image  net  large  scale  visual

recognition  challenge  and we said that  they were  to  the subsequent  networks  or  the

network  models  that  we  will  discuss  are  from are  basically  the  champions  or  very

successful submissions to one of these visual  recognition challenges.  And this  visual

recognition challenge that actually encourages the researchers to compare and to monitor

what is the progress of computer vision research across the globe.



(Refer Slide Time: 01:49)

And we have said that the image net database that contains more than a or few million

image databases. And today we are going to discuss about a popular convolutional neural

network model which is AlexNet and AlexNet was the winner of 2012 image net large

scale visual recognition challenge.

(Refer Slide Time: 02:19)

So, before we go to the architecture of AlexNet, let us see that what kind of images does

this image net contain or what is the nature of the database. So, here what I have shown

is just few samples from the image net database. And you find that there are images from



dogs, there are images from birds, there are images from horses, images from cars and all

that. So, we said earlier that this image net database contains 1000 such categories of

images and in every category there are thousands of images. So, in total the total number

of images this image net database contains is around 15 million.

So, some of those images are used for the training purpose, some of those images are

used for testing and validation purpose. So, this image net database is a huge database

which is available to the computer vision researchers and they can use this image net

database  for  designing,  training  and validation  of  the  deep neural  networks  that  the

researchers design.

(Refer Slide Time: 03:37)

So, now let us come to what is this AlexNet, so as shown here the functional diagram of

AlexNet network or convolutional network. You find that the AlexNet contains a number

of convolutional layers it contains a number of pooling layers. So, pooling which is used

in AlexNet is actually max pool operations. It also contains a number of fully connected

nets, and the output layer which is a 1000 channel softmax layer. So, why this 1000

channels of max of max layer, we have said that the AlexNet database or the image net

database, it contains 1000 different categories of images.

So, at the final output, we have one node for each of these 1000 categories. So, as there

are a 1000 different categories of images. So, we have 1000 different nodes in the output

layer, and this output layer is actually softmax layer. So, you find that the input to the



AlexNet is an RGB image. So, it is having three different channels, the red channel,

green channel and blue channel.

Then the first convolution layer in the AlexNet that has convolution kernels of size 11 by

11. So, here you can find that you have convolution kernels, what the kernel size here 11

by 11 and which tied is going to 4 and it has 96 different kernels. So, as a result from the

output the first convolutional layer output gives you 96 different channels because there

are 96 different kernels. So, it contains so the output contains 96 different feature maps.

And each of the feature map contains features of size 55 by 55 and that comes from this

calculation as every input is of size 227 by 227 and you have convolution kernels of size

11 by 11. So, as we said before in our previous class that I can compute what will be the

feature size. So, the feature size will be less than be 227 227 minus 11 divided by 4 plus

4 is the stride plus 1 which gives you 55. So, every feature map after the first convolution

layer is of size 55 by 55. Then after this convolution layer you have the overlapping max

pool layer, where the max pool max pooling is done over an window of 3 by 3 and stride

is equal to 2.

So, here you find that because our max pooling window is of size 3 by 3, but stride is 2;

that  means,  the max pooling will  be done over overlapped windows.  And after  max

pooling, you reduce the size of every feature map to size 27 by 27 and the number of

feature channels that remains 96. Then you have the second convolution layer where the

convolution kennel size is 5 by 5. And in this case you use a padding, so that the output

of the convolution layer remains same as the input feature size. 

So, the size of the feature maps generated by the second convolutional layer remains

same as the input feature map size. And the number of kernels in this case is 256, so that

means, from this convolution layer output you get 256 different channels or different

feature maps. And every feature map is of size 27 by 27. 

Then again you have an overlapping max pool layer where max pooling is again done

over an window of size 3 by 3 and stride is equal to 2. So, again that means that max

pooling is done over overlapping windows. And output of this becomes your 13 by 13

feature maps and the number of channels you have 256 because to max pooling you are

not reducing the number of channels. After this you have three consecutive convolution

layers.



So, the first convolution layer is having kernel size of 3 by 3 with padding equal to 1,

and there are 384 kernels, so that gives you 13 by 13 feature maps and there are 384

feature  maps  which  passes  through  the  next  convolution  layer  again  the  completion

kernel size is 13 by 13 with padding equal to 1.

And this has 384 number of kernels, that means, output of this convolution layer will

have again 384 number of channels on 384 number of feature maps. And every feature

map is of size 13 by 13. It is because you find that you have given a padding equal to 1

for a 3 by 3 kernel size and that is the reason that your feature map size, the size of every

feature map at the output of this convolution layer is remaining same as the size of the

feature maps which are inputted to this convolution layer. 

This again passes through another convolution layer where the convolution kernel size is

again 3 by 3 padding equal to 1 that means output of this convolution layer will generate

the feature maps, where the feature map size will remain the same that is 13 by 13. But

in this case over here what AlexNet uses is 256 kennels, so that means, at the input of

this convolution layer there are 384 channels and this 384 channels now gets converted

to 256 channels or it generates 256 feature maps. And every feature map is of size 13 by

13. 

Followed by this is then next overlapping max pool layer, again the max pooling is done

over window of 3 by 3 with stride equal to 2 and that gives you the output feature map.

And the number of channels means the same which is 256 and the size of every feature

map is 6 by 6. After this what you have is fully connected layers or which are same as

your multilayer perceptrons that we have discussed earlier.

So, the first two fully connected layers have 4096 nodes each. So, you find that after

output of this max pool layer we have 6 into 6 into 256 that is 9216 number of nodes or

number of features ok. And each of them is connected to each of the nodes in this first

fully connected layer. So, the number of connections or the number of parameters that

we will have in this case is 9216 into 4096. And then from this first fully connected

convolution layer every node of this first fully connected layer provides input to every

node in the second fully connected layer.

So, here you have number of connections which are 4096 by 4096 because the number of

nodes in the second fully connected layer is also 4096. And then we have the final layer



which is the output layer having 1000 softmax channels. So, this is a softmax layer. And

the number of connections from this fully connected layer to this output layer that is

again 4096 into 1000. So, this is overall the architecture of the AlexNet or the functional

diagram of  the  AlexNet.  And  if  you  look  at  the  architecture,  the  architecture  looks

something like this.

(Refer Slide Time: 12:11)

So, you find that the inter AlexNet is actually implemented in two channels ok. Half of

the network is put in one channel and half of the network is put in the second channel.

And because they are in two different channels, so that made it possible to train this

network on two GPU cards.



(Refer Slide Time: 12:37)

So, coming to some specific features of this AlexNet, you will find that this AlexNet

contains more than 60 million parameters and it has around 650000 neurons. And as we

have just shown, the network is split into two pipelines which makes it possible to train

the network on two GPUs. Of course, even then it took almost one week to train this

network fully. The input image size actually is 256 by 256 in 3 channels that is red green

and blue channels. And because AlexNet takes the color input in three different channels

red green and blue.

So, even if we input a grey level image which is having just one channel, so that grey

level images are to be replicated into 3-channels RGB, so that they can be accepted by

AlexNet. And to fit the input as we have seen that the first over here the input to the

AlexNet is 127 by 127 pixels, every channel is 127 by 127 pixels. So, when you fed the

input for training purpose though our input actual input is 256 by 256 RGB image, but

each such images RGB images were randomly cropped into size of 127 by 127 and they

are fed to the input layer of the AlexNet.

For training of the AlexNet, the algorithm which is used and that is the algorithm which

is used for by all  the neural networks or all the deep neural networks which is back

propagation  learning  as  we  said  earlier  and  this  back  propagation  learning  actually

implements  stochastic  gradient  descent  operation.  And to  make this  gradient  descent

algorithm to be more efficient there is an optimizer which is called momentum optimizer.



So, this AlexNet training of the AlexNet uses this momentum optimizer techniques. So, it

is stochastic gradient with momentum optimizer. And as you know that the stochastic

gradient or the back propagation learning itself is an optimization technique. So, what

does it try to optimize? It optimizes the loss at the output of the network that we have

seen earlier right. And by optimization or minimization of the loss, you tend the network

for your given applications.

And  this  momentum  optimizer  is  another  optimization  technique,  there  are  other

optimization techniques also we will see that after few lectures. So, all these optimization

techniques basically optimize this back propagation of gradient descent algorithm itself

with the aim that your gradient descent algorithm becomes more efficient. And once the

network was fully trained, the network gave a top 5 error rate of around 15.3 percent. 

So,  what is  meant  by this  top-5 error rate.  You find that  you remember through our

earlier  discussion  that  as  the  AlexNet  contains  1000  output  nodes,  every  output

corresponding to one of the image categories. So, when you test with a given input for

which is the category is unknown, what the network will do, at every output node of the

network that is the softmax layer, you get a score of the input that you are provided to the

corresponding category, that means, every output or the score output that you get from

the  output  softmax  layer  every  output  node  gives  you  a  score  function  to  the

corresponding category.

Now, if you arrange this scores, scores into say descending order of magnitude, then the

first output becomes the score for the most preferred category, the second output score

gives you the score for the second preferred category and so on. So, the top-5 error rate

says that if I take the top-5 such categories to which the network has classified the input

that we have provided, your actual class should be in one of those top 5 if it is not in any

of those top-5 categories that indicates an error, so that is what is your top-5 error. 

And in this case this AlexNet gives you a top-5 error rate of 15.3 percent. So, in all our

subsequent discussions we will talk about top n error rates, so that should be cleared

what is meant by your top in error rate or top-5 error rate.



(Refer Slide Time: 17:49)

So, these are the features of the AlexNet. Then earlier we also discussed about a problem

called vanishing gradient problem. And we have seen that if your non-linear activation

function is a sigmoidal  function or a tan hyperbolic  function,  then it  gives at  risk of

vanishing gradient, that means, in some cases as you are training the network with the

gradient  descent  procedure,  vanishing  gradient  means  that  the  gradient  of  the  error

function may become too small, so that using that gradient, when you try to update the

network parameters, the update becomes almost negligible because, the gradient itself is

very small that is what is your vanishing gradient problem.

And why do you get this the vanishing gradient problem, it is because if you remember

you remember that our sigmoid function was something like this all right. So, it gets

saturated at 1, where your input parameter x becomes very high. Similarly, it saturates to

0, when the input parameter is very low on the negative side right, because over here

your output saturates to 0, saturates to 1 and over here output saturates to 0. 

So, if your argument is some somewhere over here, you try to take the gradient of the

output with respect to argument, this gradient is almost 0. So, the same is true if your

non-linear activation is sigmoidal function or the non-linear activation is tan hyperbolic

function.  Whereas,  in case of ReLu,  you remember from our earlier  discussions that

ReLu activation function is something like this, which is rectified linear limit. 



So, on this side, your gradient never vanishes the gradient is almost count as a constant,

so that is the advantage that you get using ReLu as an non-linear activation function. But

it has other problem that unlike in case of the sigmoidal activation or tan hyperbolic

activation where the activation output is limited is bounded; in case of ReLu the output is

unbounded, as x increases the non-linear output the activation function also keeps on

increasing, so that is the problem with the value if when ReLu is used as a non-linear

activation function.

So, to avoid this problem, what AlexNet does is, it tries to normalize the output through a

process  which  is  known  as  local  response  normalization.  So,  this  LRN  or  Local

Response  Normalization,  it  carries  outs  carries  out  a  normalization  operation  by

amplifying the excited neurons while dampening the surrounding neurons at the same

time in a local neighborhood. 

And this particular operation is encouraged by from a phenomena known as lateral in

inhibition concept in neurobiology which actually indicates the capacity of a neuron to

reduce the activity of its neighbors. So, this AlexNet in order to deal with the problem of

unbounded output, it goes for a normalization of the output before applying this non-

linear activation function. So, that is how it avoids the unbounded problem or and at the

same time it avoids the vanishing gradient problem.

(Refer Slide Time: 21:41)



So, this local response for normalization it can be done across the channels, also it can be

done within a channel.  So, when you do this local response normalization across the

channel,  this  is  what  is  known as  inter  channel  normalization.  And in  case  of  inter

channel normalization, the operation is done in this way suppose i x y is the response at

location x y in your feature map. 

And the index i indicates the ith channel. So, b i x i is the output at location x y in the ith

channel and a i x y is the original value at location x y in the ith channel. So, the way the

normalization is done is by this, you normalize this a i x y by a factor which is given by k

plus alpha times sum of a j x y where this j varies within neighboring channels.

So, j varies from maximum of 0 to i minus n by 2 to minimum of n minus 1 and i plus n

by 2, that means, you take n by 2 number of channels before and n by 2 number of

channels after. This max and min operations with 0 and n minus 1 as arguments is put to

take care of the first channel feature channel and the last feature channel if there are total

n number of feature channels. So, this is what is your local response normalization where

the normalization is carried over subsequent channels. 

(Refer Slide Time: 23:51)

So, the nature of output that you get using this local response normalization is something

like this. So, here these are the feature values of different channels before normalization,

and these are the feature values that you get after the normalization across the channels is

carried out. So, here you find that when you use this normalization, your output actually



becomes minded, in fact, bounded in fact every output you find that after normalization

becomes less than 1. So, this is one type of normalization, local response normalization

which is inter channel LRN which is which can be used.

And  the  other  kind  of  normalization  that  can  be  used  is  what  is  intra  channel

normalization. For the intra channel normalization is carried over the features within the

same channel.  So,  here  again  if  I  want  to  apply  this  intra  channel  normalization  in

channel i, again you find that b i x y is the feature value after normalization at location x

y in the ith channel and a i x y is the feature value at the same location x y in the ith

channel before normalization.

So, here what you do is you normalize this feature value by again affected k plus alpha

times take the summation of square of the feature values within neighborhood of x y.

And again  here  the  neighborhood size  is  say  n  by  n  by  n  and  again  max  and min

operations are performed to take care of the boundary features or features which are at

the boundary of the feature frames ok. 

Why k is used is to avoid division by 0. In case this particular summation term within

this factor this becomes 0, k is a very small positive value, so k takes care of the fact that

I do not encounter any situation of a division by 0. And you find that this k and alpha

they are actually hyper parameters, so which has to be chosen by the designer. So, this is

another kind of normalization which is intra channel normalization can be that can be

performed for this local response normalization operation.
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And here again you find that the after normalization the kind of output that you get. So,

here on the left hand side you have the feature values before normalization and on the

right hand side, we have the feature values after normalization. And here again find you

find that after normalization the feature values have been bounded ok. So, this is how

using the local response normalization techniques, the AlexNet could take care of the

unbounded output problem of rectified non- a rectified linear unit which is the non-linear

activation function which is used in AlexNet.

(Refer Slide Time: 27:05)



The other problem in AlexNet you find is that as we said that the number of parameters

in AlexNet is more than 60 million. Obviously, with such a huge number of parameters,

there is always a risk that while you train this network, there will be a problem of over

fitting. So, what is this problem of over fitting, over fitting means that the network will

try  to  learn  or  it  will  perform very  well  on  your  training  data  set  or  it  will  try  to

memorize the training data set. But in the process it will not be able to code the general

properties or the features of the input data.

So, as a result your training performance may be very high, whereas the performance

during training during training or the generalization error may not be acceptable. So, to

avoid this over fitting problem or to reduce this over fitting problem, during training

additional data or augmented data training data was generated from the existing data.

And this augmentation was done by data mirroring and the augmentation was also done

by taking random crops from the input data.

So,  you have  different  multiples  of  the  input  data  right  by which  the  networks  was

trained,  so  that  the  network  can  code  the  features  or  the  descriptors  the  general

descriptors of the input data. The other way this overfitting problem was reduced is by

taking a regularization approach where the regularization was a drop out regularization.

(Refer Slide Time: 29:03)

So,  let  us  see  what  is  this  drop  out  regularization.  This  dropout  regularization  is  a

technique which was proposed by Srivastava et al in the year 2014. So, what is done in



this  drop  out  regularization  is  that  during  training  randomly  selected  neurons  or

randomly selected nodes which are selected with a probability of say 0.5, weight drop

from the network. So, the probability that a node will exist in the network is 0.5 similarly

the probability that it will be dropped out is also 0.5.

So, what does this drop out means that a node which is dropped out that node will not

pass  its  output  to  the  subsequent  nodes  or  the  nodes  in  the  subsequent  layers

downstream. And at the same time, during backward pass for those nodes no updates of

the input weights will also be taken place. So, that means, as if you are simply removing

that particular node and the associated connections from the network during the training

process.

(Refer Slide Time: 30:13)

So, how do you gain by this dropout?
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So, here you said that while training the weights of the neuron are tuned to some specific

features  that  gives  some  sort  of  specialization  to  the  neurons.  And  the  neighboring

neurons also starts relying on these specializations which is known as co-adaptation and

that leads to a problem that neural network becomes too specialized to the training data. 

And through dropout what you are doing is as you are removing some of the neurons at a

random that  means,  we have  to  have  other  neurons to  take  over  the  charges  of  this

dropped out  neurons.  So,  as  a  result  the  neural  network learns  multiple  independent

representations  and that  is  how it  avoids  the  problem of  overfitting  and your  neural

network becomes more general.

So, this previous diagram shows that some of the neurons which had dropped out during

the training process. So, the neurons which are white, they are dropped out at the during

the training process. So, in different training epochs that neurons will be dropped out at

random. So, it is not that the same neuron will be dropped out every time, so that is what

is your probability that is decided by the (Refer Time: 31:39) of probability.
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So, as a result what you gain is something like this the network becomes less sensitive to

the specific weights and it enhances the generalization capability of the network. And as

a result it becomes less vulnerable to the overfitting problem ok. So, this is what is done

only during the training process. But during the testing the intra network is used that is

no dropout at the time of testing. Obviously, while training as we are dropping out some

of the neurons. 

So, the number of iterations which will be required to train the network will be more,

that means, your training time increases. But at the same time on the positive side what

you have is that it helps overfitting problem, so that your network becomes more general,

and it captures the salient features of the input data, it does not simply memorize the

input data and that gives better performance the network gives better performance with

such a type of training.

So, we will  stop here today. In the next class, we will  try to go through some other

popular CNN architectures. And we will also discuss about some challenges that you

face while training of the deep neural networks.

Thank you.


