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Hello,  welcome to  the  NPTEL online  certification  course  on Deep Learning.  In  our

previous two lectures,  we have discussed about the two operations,  one of them was

convolution  operation,  the  other  one  was  a  closely  related  operation  which  was

correlation or cross correlation. So, we have said that when you have been given a linear

time invariant system or a linear space invariant system which is characterized by its

impulse response,  when given any input signal  to such a system the response of the

system or  output  of  the  system is  actually  convolution  of  the  input  signal  with  the

impulse response of that LTI or LSI system. 

Against that closely related operation which is cross correlation is something like if you

are given two signals say one of them is f t, the other one is g t, you find out the cross

correlation between f t and g t and this cross correlation value will be very high if the

signals are very close to each other. That means, to find out the similarity or dissimilarity

between two given signals you employ the correlation or cross correlation whereas, to

find out the response of a system to a given input you use the convolution of the input

signal with the impulse response of the LTI or LSI system. 

(Refer Slide Time: 02:11)



So, given this now we will talk about in today’s lecture the architecture of convolutional

neural networks. So, while doing this we will talk about what is a convolution layer. We

will also give an idea of what is known as receptive field, then the non-linearity which is

used in convolutional neural network and we also talk about the other operation which is

used in convolutional neural network which is the pooling operation. So, let us see each

of this one by one.

(Refer Slide Time: 02:46)

So, as we have seen before that in case of one-dimensional convolution, if you are given

an input signal x in the form of a sequence of samples at regular intervals of time and if h

is the impulse response of the input signal, in that case the convolution output or the

output of the system for the given input say x is given by y, where y n is given by this

particular expression which is the convolution of the input signal x with the impulse

response of the system.

In the same manner, in the continuous domain we can represent the same convolution

operation as this expression where y t is equal to x tau, h t minus tau d tau you take the

integral over tau varying from 0 to infinity. So, this is what gives you the output signal at

every time instant t and similarly, in the discrete case the nth sample of the response or

nth sample of the output signal is given by x p times h n minus p take the summation

from n equal to 0 to infinity. So, this is what you get for one-dimensional signal.



But in our case which we will talk about, yes, mostly on image classification techniques

or computer vision techniques the signal is a two-dimensional signal or images. So, in

that  case,  given  a  linear  type  space  invariant  system  characterized  by  the  impulse

response say h m n, the given an input signal x the output signal or the response of this

linear space invariant system is given by y, where every sample or every pixel in the

output image y m n is given by the convolution equation which is x p q, h m minus p, n

minus q, take the summation over p is equal to 0 to infinity and q is equal to 0 to infinity.

So, this is how you get the output of the system when the input is an image x, output is

the image y, where the system impulse response is given by h. 

So,  given  this  now let  us  try  to  see  that  how we can use  these  expressions  or  this

convolution  operation  in  our  convolutional  neural  network  architecture.  So,  now,

onwards whenever I talk about convolution or the convolution operation, the convolution

is purely characterized by the impulse response h and the operation as we said that both

in case of cross correlation or correlation and in case of convolution they are similar, ok.

(Refer Slide Time: 06:11)

So, given this, you find that the purpose of this convolution operation is to extract certain

features within the given image. Say for example, I am interested to find out whether an

edge, whether it is an horizontal edge or vertical edge or a diagonal edge occurs at a

particular  location  in the image or not.  Say for example,  I  am interested to  find out

whether I have a horizontal edge at this particular point. So, in order to find out whether



you have an horizontal edge at this particular point, it is not necessary that you have to

look over the entire image. Rather, if I take a small neighborhood around this point and

process the image within this small neighborhood then I can find out whether there is an

edge whether it is horizontal or vertical present in this location or not. 

So, as a result the convolution kernel that you have to use that convolution kernel has to

look into only this  particular  neighborhood,  it  does not  have to  look over  the entire

image. So, given this, it  is possible that in the previous slide what had shown is the

summation from 0 to infinity, it is not necessary that I have to have convolution kernel

which is a infinitely extended, rather I can have a finite convolution kernel, so as given

over here. 

So,  if I  have this  finite convolution kernel,  this kernel  when slighted over the entire

image and at every position on the image you do the convolution operation, this gives

you a response to that particular region of the image to this particular system given by

this impulse response.

And the result you see that if you convolve this image with this convolution kernel this is

what is the output response that you get, that we said earlier as a feature map. Similarly,

if you convolved the same image with another finite impulse response as over here you

get this as the output, which highlights all the horizontal edges which are present in the

image. So, this clearly shows that when I go for convolution operation the convolution

kernel need not be an infinite lisp and kernel, but I can have a finite convolution kernel.

So, using this finite convolution kernel now I can write my convolution expression in

this form.



(Refer Slide Time: 08:56)

So, in one-dimensional case I assume that my span of the convolution kernel is given by

2A plus 1, where A is some integer maybe 1, 2, 3 and so on. So, value of A defines that

what is the span or size of the convolution kernel. Similarly, in case of two-dimensional

signal a convolution kernel can be of size say 2A plus 1 by 2A plus 1, again for different

values of A. So, the values of A will determine what is the size of the convolution kernel

and  given  this  finite  convolution  kernel,  now  I  can  rewrite  the  same  convolution

equations that we had written earlier in a slightly different form, and you will find that

both these forms are actually identical.

So, now I will write in one-dimensional case the outputs sample y n is equal to w p x n

minus p, where now p varies from minus A to A. So, you find that if value of A is equal

to 1, then p will have values minus 1, 0 and 1 which says that the convolution kernel is of

size 3. Similarly, in two-dimensional case I will write the same convolution equation in

the form say y m n, where y m n is the image sample at location m n in the output image.

So, here the convolution operation simply becomes y m n is equal to w p q x m minus p,

n minus q where both p and q varies from minus 1 to minus A to plus A. So, if value of A

is equal to 1, so this means both p and q will vary from minus 1 to 1, 0 inclusive that

means, my convolution kernels will be of size 3 by 3 and you notice one more thing that

in the earlier case the impulse response we had represented by h, but now I am writing

the  same impulse  response  as  w. The reason being  it  is  the  same impulse  response



coefficients or the kernel coefficients will  be used as weights when in a node in the

convolution  layer  you accumulate  the weighted  sum of  the inputs from the previous

layer. 

So, these coefficients in the convolution kernel are nothing, but the weights. So, instead

of writing this as h, I am writing this as w indicating that the same kernel coefficients

will be used as weights in input weights of a node in the convolution layer.

(Refer Slide Time: 11:59)

So, given this now, I have the basics of a convolution network. So, just for an illustration

let  us  see  how  this  convolution  will  work  in  a  one-dimension.  So,  I  am  using  a

convolution kernel of say W minus 1, W minus 2, W 0, W 1 and W 2. So, this is a kernel

one-dimensional convolution kernel of size 3.

So, the first operation that we have seen earlier is we have to flip the kernel, then shift it

to the location where I want to find out the output response. My input signal sequence is

X 0, X 1, X 2, x 3 and so on. So, when I want to find out Y 0 the output response at time

instant 0, then this flipped convolution kernel is centered at on the sample X 0 and then

you  go for  point  by  point  multiplication  or  sample  by  sample  multiplication  of  the

sample values with the corresponding kernel coefficients and add all of them together.

So, this addition of this summation of the weighted input samples gives you the output

sample value which is Y 0 at time instant 0.



And here you notice one more thing that we have added some additional elements in the

input sequence which we have kept as values 0 and this is what is known as padding. So,

you go for padding with extra elements with value 0 in order to make sure that your

number of samples output samples will be same as the number of input samples. We will

also see in case of two-dimension that we also use padding for two-dimensional cases in

case of images. 

(Refer Slide Time: 13:56)

So, given this, so this is what we get for n equal to 0 at Y 0. Similarly, two for Y 1 you

shift the kernel by one location perform the same operation.



(Refer Slide Time: 14:02)

So, you get Y 1, you get Y 2, you get y 3, you get Y n minus 1. So, for to get Y n minus

1, again you find that your kernel is centered on sample X n minus 1.

(Refer Slide Time: 14:18)

Similarly, Y n the kernel is centered on sample X n and that gives you output Y n. So,

here you notice one more thing that when a convolution operator is convolving over the

input sequence it  is actually  looking at  a smaller number of sample values.  It  is not

looking at the entire number of and number of samples and using the smaller number of

sample values it is computing what is the output response.



So, in this case when I want to find out what is this X n we are actually looking at the

sample values from X n minus 1, n minus 2 to X n plus 2 as the size of my convolution

kernel is 5 and this is what is known as your receptive field that is the range of the input

samples over which the convolution takes place. This is what is known as the receptive

field. 

We will also see that in case of images this receptive field will actually be a rectangular

region. So, we can continue in the same manner to find out Y n plus 1, Y n plus 2 and so

on.

(Refer Slide Time: 15:34)

So, this is your illustration for one-dimensional case.



(Refer Slide Time: 15:41)

Similarly, in case of two-dimension or in case of images let us assume that I have an

image of size 6 by 6 and I have a kernel of size 3 by 3.

(Refer Slide Time: 15:53)

So, in order to perform the convolution the first operation that I have to do is because I

have kernel 3 by 3. So, I had to go for padding with extra rows and columns all of them

will have element values equal to 0. So, here you find that these are the additional rows

and the additional  columns which are padded, where all  the values,  values of all  the



elements in this additional rows and additional columns will be 0s. So, this is what is

known as 0 padding. 

Same,  similarly,  for  the  kernel  also  we  have  to  flip  the  kernel  both  vertically  and

horizontally,  around  the  vertical  direction,  around  the  horizontal  direction.  So,  after

fitting the flipping this two-dimensional kernel now we have to go for computation of the

convolution. 

(Refer Slide Time: 16:44)

So, here you find that after flipping you are placing your kernel on the pixel location 0,

0, then you are multiplying every kernel coefficient with the corresponding pixel in the

input  image  and  you  sum them together  that  gives  you  the  output  response  or  the

convolved image at location 0, 0 in the output image. So, this is what you are going over

here. 

So,  I  am  placing  the  kernel  centered  at  location  0,  0  in  the  input  image,  doing

multiplication of all the pixels with the corresponding coefficient the kernel coefficient

sum them together and that gives you the value y 0 0 at location 0 in the output image

which we are calling as feature map and the way you perform this convolution is that

after convolving at this location, next what you have to do is you have to shift the kernel

in the horizontal direction. 



So, here we shifted by one location perform the same operation and you get the output of

the next convolved value in your feature map and you continue like this, you shift the

kernel  again  compute  get  the  next  value  near  feature  map.  Continue,  and  the  same

manner, same manner, same manner, now you come to the next row compute the same

value and so on.

While doing so, as you scan or slide over the entire image computed in the convolution

for at each of the locations ultimately you get your the feature map, the feature map is

complete. So, I get the feature map as given on the right hand side over here. So, this is

the convolution operation and in each of this case you find that when I come I compute

the convolved convoluted value at any of these locations, I am actually considering the

number of pixels or the inputs over a smaller region in the input image and this is what

we said as your receptive field.

So,  once  this  convolution  is  complete,  now let  us  see  what  is  the  architecture  of  a

convolutional neural network.

(Refer Slide Time: 19:23)

And one more thing that when I talk about convolution you specify one more parameter

which is known as stride. The stride simply says that when you shift the kernel or slide

the kernel over the input image by how many locations the kernel has to be shifted. So,

in the previous computations illustrations that I have shown the kernel was shifted by



one pixel both in the horizontal direction as well as in the vertical direction. The stride

specified in the previous case in the illustration that I have shown was equal to 1.

Similarly, if my shift is by two pixels in the horizontal direction as well as in vertical

direction the stride is actually 2. So, if you increase the stride that effectively reduces the

size of the feature map. So, here you find that in this case what we have shown that for

an given input image of size 7 by 7 and with 3 by 3 kernel, if I do the convolution with

stride equal to 1, my output image will be of size 5 by 5 whereas, if I perform the same

convolution with stride equal to two then my output or the feature map will be of size 3

by 3. So, if you increase the stride, larger the stride is smaller the feature map that you

get. 

(Refer Slide Time: 20:53)

So, given this a typical architecture or CNN or convolution neural network will have the

following  layers.  The  convolution  layer  the  convolutional  neural  network  has  a

convolutional layer, a convolution layer which performs a convolution operation, then

output  of  the  convolution  passes  through the non-linearity. We have seen  earlier  the

power of non-linearity that it gives a non-linear mapping of the input signal in such a

way that after the non-linear mapping it becomes linearly separable. So, that is the power

of non-linear mapping that we can have and along with non-linearity it also performs an

operation pooling. 



So, when you talk about convolution layer, the convolution layer actually performs all

these 3 operations one after another. You have the convolution layer followed by non-

linearity, then you have pooling layer and in a typical CNN architecture, these triplets

that is convolution non-linearity and pooling they are repeated they are stacked one after

another and how many such triplets will be stacked together determines what is the depth

of a network, ok. Then after this is done as given over here it is followed by finally, one

or more fully connected layer. 

So, as we have seen that as we have a layer of nonlinearities over here it is expected that

output  that  you  get  after  this  convolutions  non-linearity  and  pooling  operations  the

features after all these operations will become linearly separable or expected to be linear

say linearly separable and then, I have a fully connected layer which classifies the input

to one of the known categories. 

So, this part of the network this fully connected network that gives you the classification.

So, for an given input image you have all these operations in between finally, you can

classify the input image to one of the given classes or one of the known categories. So,

this is a typical architecture of a convolutional neural network.

(Refer Slide Time: 23:28)

Now, coming to this convolution once more, you find that in most of the cases the input

image that you get is a color image. That means, till now what we have discussed is that

image being a two-dimensional image and defined in say X Y domain, in a color image



because the colour image has got  3 different  planes red plane,  green plane and blue

plane. So, my input image is a actually three-dimensional image. 

So, once I have a three-dimensional image then my convolution also has to be in three-

dimension that means, the kernel the convolution kernel that you have to define is also a

three-dimensional convolution kernel and if I want to determine multiple feature maps of

course, that depends upon what is the kind of application that we will have, that how

many feature maps I will want to generate depends upon the complexity of your input

images, then for every feature map I will have a separate convolution kernel.

So, if I have say n number of convolution kernels then after convolving the input image I

will have n number of feature  maps.  So, for every convolution kernel I will  have one

feature map and all these feature maps are stacked together which gives you the output of

the convolutional neural network. So, as we have seen over here you find that this is one

kernel and this is another kernel, with the help of these kernels we have seen what is the

nature of the output in our previous slides. 

So, this particular kernel gives you all the vertical edge information, and this kernel gives

you all  the  horizontal  edge  information  and both vertical  information  and horizontal

information they are actually features of your input image.

So, I get one feature map with this, I get another feature map with this, so when you get

the output you have stacks of these two feature maps. So, you find that the number of

kernels that you will use you have so many number of feature maps and all these feature

maps stacked together gives you the final output. 



(Refer Slide Time: 25:46)

So, I can visualize a convolution operation something like this. So, you find that at each

location. So, this particular animation shows you that the kernel actually slides over the

entire image and how it will slide that depends upon what is the stride that you have

specified, whether the stride is 1 or stride is 2, and for every location of the kernel where

the kernel is placed it computes the convolution and that gives you one sample at your

output  feature  map.  So,  in  this  particular  case  it  in  this  animation,  it  shows only  2

location, only 4 locations, but actually the sliding is done over the entire image.

(Refer Slide Time: 26:40)



In the next operation, once I have this convolution output and as we have said that if you

have multiple number of kernels you have multiple feature maps. So, here again what we

have shown is, so I have two different kernels one kernel is shown by red and the other

kernel is shown by green. So, this red kernel gives a one feature map which is shown

over here and the green kernel shows another gives you another feature map which is

shown over here. So, all these feature maps are stacked together to give you the final

output. 

(Refer Slide Time: 27:11)

And just an example suppose I have an input image of size say 32 by 32 by 3 and I have

say 10 kernels each of size 5 by 5 by 3, and then my output feature map will be of size

32 by 32 by 10 because I have got 10 different number of kernels and I get, I assume that

the input image was sufficiently padded so that your output feature map size is same as

the input image and this is just for visualization.



(Refer Slide Time: 27:52)

So,  given this  visualization  non-linearity  function  that  you use  after  the  convolution

operation is usually a ReLU function. Though other nonlinearities are also possible that

in case of, but in case of convolutional neural network it is ReLU which is more popular.

(Refer Slide Time: 28:11)

And after non-linearity, what we have said is that you have got another layer which is

pooling layer. So, this pooling performs two tasks, one is it reduces the size of the feature

map and another operation that the pooling does is at every location in the output the

pooling operation replaces the output at that location with a summary statistic of nearby



locations and while doing so the dimension of the feature map is reduced and the other

effect  of  the  pooling  is  that  it  makes  your  feature  map  to  some extent  invariant  to

translation.

(Refer Slide Time: 28:59)

So, given these two again as an example, if my input feature map is as shown over here

in the left hand side after performing a pooling operation, I can have different types of

pooling, I can have max pooling, I can have average pooling and so on. So, here it shows

a simple pooling operation which is max pooling, so on the left hand side we have a

feature map of size 4 by 4 and this max pooling over an window of 2 by 2 what it does is

it  looks  the  feature  values  in  a  window of  size  2  by  2,  and  then  whichever  is  the

maximum feature value that is put in the output. 

So, as seen in this diagram that with this max pooling and with stride equal to 2 when

you come to this 2 by 2 window the maximum value is 9, so that 9 is outputted as the

output feature value. Similarly, over here the maximum value is 6, so 6 is outputted. And

at the same time you find that the size of the feature map it reduces from 4 by 4 to size 2

by 2. 

So, these are the different operations that we will have in a convolutional neural network.

We will have convolution, we have non-linearity and follow it by a pooling operation. 



(Refer Slide Time: 30:23)

So,  given  this  a  typical  architecture  of  a  CNN  a  convolutional  neural  network  is

something  like  this.  You  have  an  input  image  which  is  followed  by  a  number  of

convolution,  non-linearity  and  pooling  operations  and  at  the  end  after  all  these

convolution  non-linearity  and  pooling  operations  we  will  have  one  or  more  fully

connected layers which are actually the classifiers, ok. And at the output layer we will

have the number of nodes which is same as the number of classes that you have and this

is the typical architecture of a convolutional neural network.

So, in today’s lecture what we have talked about is how you perform convolution, what

is the receptive field and the different operations of the different layers of operations in a

convolution neural network. So, I will stop here today. In our next lecture, we will take

up  some  of  the  popular  convolutional  neural  networks  which  has  been  reported  in

literature.

Thank you. 


