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Hello,  welcome to  the  NPTEL online  certification  course  on Deep Learning.  In  our

previous  class,  we  have  started  discussion  on  convolutional  neural  network,  and  as

convolutional neural network fully depends upon an operation known as convolution. In

the last class, we have talked about the convolution,  how to compute convolution. In

today’s  lecture,  we  will  talk  about  a  very  close  operation  which  is  very  close  to

convolution known as correlation or cross correlation and in many cases because the

operations  are  so  similar  mathematically  that  convolution  and  correlation  or  cross

correlation, they are confused.

(Refer Slide Time: 01:19)

So, I will just briefly go over what we have done in the previous class. We have talked

about the linear time invariant system in case of time domain signals. When it is spatial

domain  signal  like  images,  the  equivalent  system  is  what  is  known  as  linear  shift

invariant system. And we have defined convolution in linear time invariant systems as

well as linear shift invariant system.



(Refer Slide Time: 01:51)

So, what we have seen in our last class that a convolution operation basically tells you

that if you have a linear time invariant system, so now onwards the linear time invariant

system or linear shift invariant system, we will use them interchangeably. So, when I talk

about linear time invariant system, this is applicable for time domain signals like speech

signal and all; but when we talk about the linear shift invariant system, it is applicable to

spatial domain signal which is typically an image. 

So, convolution operation is actually defined in case of a linear time invariant system or

a linear shift invariant system. So, we have said that if a linear time invariant system is

characterized by its impulse response, then given an input signal x to that linear time

invariant system, the output of the linear time invariant system or the response of that

LTI system is nothing but the convolution of the input signal x with its impulse response

h. So, we have taken a discrete system where the impulse response is given by say h 0, h

1 up to say h n and so on. So, let us assume that this is the impulse response is finite. So,

you have a finite  impulse response system, and let  us assume that  the value of n is

suppose 3.
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That means the impulse response is given by h 0, h 1, h 2 and h 3, this is the impulse

response of the system. And suppose we have the input sequence which is given by x 0, x

1, x 2, x 3, and it continues. So, this is the input sequence. So, at time instant 0, you have

input x 0; at time instant 1 you have x 1; at time instant 2, x 2 and so on.

And we have seen that given this input signal and given that output sequence, the given

the impulse response, the output of the system is actually given by y n is equal to x m h n

minus m take the summation over m varying from 0 to infinity. And in this case, because

we are talking about the linear the finite impulse response, so m will vary from 0 to 3 as

the impulse response varies from h 0 to h 3.

So,  what  does  it  mean? When I  try  to  compute  the  impulse  response,  so given this

sequence of signals x 0, x 1, x 2, x 3, x 4 and so on at time t 0, your output y 0 is given

by x 0 times h 0, at time instant y t 1 the output y 1 is given by x 0 h 1 plus x 1 h 0 and so

on. And that is from where we get this equation that y n is equal to x m h n minus m,

where m varies from 0 to infinity or in this case m varies from 0 to 3. So, when you go

for computation of this response, computation of the output or the convolution operation,

the computation is something like this.
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So, I assume that my input is x 0, x 1, x 2, x 3, x 4 and so on it continues this way. And

when my impulse response was given as h 0, h 1, h 2 and h 3 for computation over here,

I just flip it. So, what I put is at t is equal to 0, my impulse response is put like this, h 0, h

1, h 2 and h 3. So, that is what gives you that at time t equal to 0, my output is x 0 times

h 0. At time t is equal to 1, what I have is this h 0 is shifted over here, h 1 is shifted over

here, then I have h 2, h 3. So, at time t equal to 1, your output becomes x 1 times h 0 plus

x 0 times h 1. 

Similarly, at time equal to t equal to 2 h 0 shifts over here, h 1 shift over shifts over here,

h 2 shifts over here. So, my output becomes x 2 times h 0 plus x 1, this is x 2 times h 0

plus x 1 times h 1 plus x 0 times h 2, and it continues like this. So, as it appears that the

impulse response is flipped, and then it is shifted to location n. And at that location you

compute  from  the  impulse  response  and  the  input  samples,  you  take  their  product

multiply them point by point and then add them together. And because before time t

equal to 0, I do not have any input symbol any input sample. So, what is assumed is that

you pad a number of samples,  which are all  equal to 0, so that  your computation is

complete.

So, in this case, at t equal to 0, your computation is x 0 times h 0 plus 0 times h 1 plus 0

times h 2 plus 0 times h 3 and so on. So, this is what is known as padding. So, in case of

this time domain signals, all the samples before t equal to 0, I am assuming that those



sample values are equal to 0. Similarly, when it comes to images, where the convolution

operator  will  be  a  two-dimensional  operator,  we  will  also  have  padding  where  the

padding will be in the form of adding extra columns, and at extra rows where all the

components or all the elements in those extra columns or extra rows will be equal to 0.

So, this is how you can compute the convolution.

(Refer Slide Time: 09:41)

And we have seen in our previous class that given a convolution operator like minus 1,

minus 2, minus 1, 0, 0, 0 and 1, 2, 1, what this operator does is it performs and weighted

sum along row. And given three consecutive rows you take the take the first row, takes

the third row performs weighted sums of the elements in the first row performs weighted

sum of the elements. In the third row and take the difference of these two these two

weighted sums or in effect that kind of operation that you are doing is differencing in the

vertical direction.

Similarly,  this  second  operator,  it  performs  in  the  same  operation  in  the  orthogonal

direction that is this row performs weighted sum of the first column, and then negated.

This  column performs weighted  sum of  the third  column,  and then  finally, the  inter

convolution operation gives you the difference of these two weighted sums that means it

is performing a differencing or differential operation in the horizontal direction.

So, as a result this operator tells you that what are the vertical edges or what are the

horizontal edges which are present in the image as given over here and this operator tells



you, what are the vertical edges which are present in the image which is as given over

here.  So,  these  edges  are  the  important  features  of  an  image,  which  helps  us  to

understand or to recognize the objects present in the image. So, this is one convolution

with a type of convolution operator or convolution kernel. 

(Refer Slide Time: 11:41)

And if you just combine these two outputs, then what you get is this. So, here what I

have is this output is just combination of these two they are merged together in some

form. And you find that in this particular output or the processed image convolved image

contains both the information of vertical edges as well as horizontal edges.
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Similarly, if I take another kernel as given over here, so where the image on the left this

is  your  input  image.  This  is  one convolution kernel.  So,  if  you convolve your input

image with this convolution in kernel, then this is the convolved image that you get. Here

again you find that the kind of information or the features that you have are a sort of

vertical edges, which are present in the image. On the other hand, if I convolve the same

image with this kernel, the output, the convolved image that you get as shown over here.

Again  it  tells  you  a  set  of  horizontal  edges  something  some  information  about  the

horizontal edges, which are present in the image. And these output images that you get

these are what are known as feature maps.

So, for your understanding of the image or to recognize what are the objects which are

present  in  the  image,  these  feature  maps  are  very,  very  important.  So,  the  further

processing are actually done on the feature maps in deeper layers of the neural network

that we will come to later on.

So, we have seen that in case of an one-dimensional image, you flip the convolution

kernel, and then shift it along the samples input image samples, and then you perform the

convolution.  Similarly  in  case  of  images  where  my  convolution  kernel  is  a  two-

dimensional convolution kernel again, I have to flip it before I perform the convolution

operation. And now the flipping has to be both around vertical axis and around horizontal

axis.



So, once the kernels are flipped around vertical and horizontal axis, after that the kernel

is  used for convolution operation.  But one thing you should be clear  about  that  this

convolution  operation  is  not  the  operation  between  two  different  signals,  but  the

convolution operation actually gives you the output of a linear time invariant system or

linear  space  invariant  system,  where  the  convolution  kernel  is  actually  the  impulse

response of the system.

So, given this impulse response whenever you have a an input signal, whether it is a time

domain signal or one-dimensional signal or it is an image which is a two-dimensional

signal,  the output  is  actually  which is  the convolution of your given signal with the

convolution kernel. The output is actually the response of the system characterized by the

impulse response to the input signal that we are giving. So, this is what the convolution

operation is. Now as I said that a very close operation, which is very close to convolution

which is known as correlation.

(Refer Slide Time: 15:21)

So, when you find the correlation between two different signals, this is what is known as

cross correlation. So, unlike in case of convolution, where the convolution output is the

response  of  the  system to  a  given input,  in  case  of  correlation  the  cross  correlation

actually  tells  you  what  is  the  similarity  between  two  given  signals.  So,  here  cross

correlation is the actual operation between two given signals, whereas the convolution is

not. 



So, the correlation operation is obtained like this. Suppose, I have one signal say x and

the other signal is y ok. Again initially let us talk about the discrete signal. So, x is given

by x 0, x 1, x 2 up to say x n if I have n number of samples. Similarly, for y, the samples

are y 0, y 1, y 2 up to y n,  where y also has n number of samples.  Then the cross

correlation between x and y is given by x n, y n, take the summation over n varying from

0 to sorry let me write it as x m, y m. So, where m will vary to will vary from 0 to n. So,

this  is what is the cross correlation between the two signals x and y. And this  cross

correlation is nothing but what is the degree of similarity between the two signals x and

y.

So,  how do we say that  it  is  this  cross  correlation  actually  gives  you the degree  of

similarity?  You remember  so  far  whatever  we are  discussing  is  in  the  discrete  case

obviously, this can be generalized to continuous case, where the sampling frequency can

be assumed to be infinite right that is inter sample gap is infinitesimally small, then this

discrete system actually leads to a continuous system. We will come to that a bit later. 

(Refer Slide Time: 18:05)

So, suppose we have this two signals x and y, and I want to find out that what is the

difference between these two signals x and y. And to compute the difference, what we

usually do is we take the sum of squared error that means I take x i minus y i, take the

square of this, and the sum of this for I is equal to 1 to n. So, this is the sum of squared

error between the two signals x and y. And obviously, if the signals are widely different,



then the sum of squared error will be high; if the signal is very close x and y are very

similar, then sum of squared error will be low.

So, here you find that if I expand this, this simply becomes x i square plus y i square

minus 2 of x i into y i, take the summation of this, summation of this and summation of

this. So, here you find that given x and y that is your given a set of samples from x, you

are given a set of samples from y. So, given x and y, sum of x square and sum of y square

is fixed. And if the two signals x and y are very similar, then sum of squared has to be

low. So, if sum of squared error has to be low and given that x i square and y i square

they are to be fixed, I must have for smaller values of sum of squared error S. So, so, let

me put it as S. So, for smaller values of S, I must have x i into y i sum of that to be very

large.

So, that clearly indicates that if x and y, they are similar, then sum of x i into y i will be

large. Whereas, if the signals are widely different, then obviously S has to be very high if

s is high that is sum of square error is high, then x i into y i summation of this over i that

has to  be low. And this  x i  into y i  sum of this  is  nothing but the cross correlation

between the two signals x and, x and y. So, this cross correlation actually tells you what

is the degree of similarity between the two signals x and y. Now, what is this x i into y i

sum of this.
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If you think that x i have signal say x 0, x 1, x 2, x 3, so value of n is equal to 3, and the

other signal is y 0, y 1, y 2 and y 3. Then x i into y i summation of this, i varying from 0

to 3 is nothing but x 0 into y 0 plus x 1 into y 1 plus x 2 into y 2 plus x three into y 3,

which is nothing but I can put it in this form this is x 0, x 1, x 2, x 3. If I put it in the form

of a vector representation times y 0, y 1, y 2, y 3. So, if the state of input samples of X is

considered to be a vector, and similarly  set  of the samples  of Y is  considered to be

another vector say Y, then this cross correlation is nothing but the dot product of X and Y.

And we know that if the vectors X and Y are similar, then the dot product between the

two vectors X and Y will be high; if the vectors are dissimilar, then the dot product will

be quite low and that is what the cross correlation tells you. And, in fact, if one of the

two vectors X or Y is an unit vector, then this dot product straightaway tells you what is

the degree of similarity. So, suppose let me take just a two-dimensional case, that X is a

two-dimensional vector, Y is also a two-dimensional vector, and say Y is represented by

an unit vector.

(Refer Slide Time: 23:45)

So, if I take X dot Y; where Y is an unit vector is nothing but in two-dimensional case

this will be mod of X into cosine theta, where theta is the angle between the two vectors

X and y. And if X and Y they coincide that means, they are in the same direction, then

cosine theta is equal to 1, so the dot product is simply mod, mod of x. As theta increases

from 0, then cosine theta goes on reducing it reduces from 1. So, the value of the dot



product also goes on reducing. So, it  is  simply like this  that  I  have vector Y in this

direction which is an unit vector, and I have X over here, so this X dot Y is nothing but

projection of X onto the vector Y, and this is the angle theta between the two vectors.

So, as theta goes on increasing, the projection the value of the projection of the length of

the projection goes on reducing. And when theta is equal to 90 degree, the projection is 0

when the vectors are orthogonal to each other. And this dot product or the projection

simply tells you what is the degree of similarity. And that will be make maximum when

theta is equal to 0 that means X is in the direction of Y, or X is a multiple of vector Y. So,

given this now the question comes that how do we compute the cross correlation? 

(Refer Slide Time: 25:27)

So,  let  us  give  some  example  of  this  cross  correlation  so  over  here.  So,  as  cross

correlation  tells  you the  degree,  degree  of  similarity  between  two signals,  the  cross

correlation can also be used if one of the signal, I take as a template, and another signal

is a bigger signal the cross correlation can be used to find out in a bigger image, where

the smaller image given by template exists ok.

So, given that I am taking an example over here, this is say a bigger image. And this is

my template I want to find out that in this bigger image, where this template exists. So,

for that I put this template over this image and shift it in every position for every position

of the template I compute cross correlation. And I compute cost correlation value for all

different positions of the template and in a particular position where the value will be



maximum that is the location, where I can say that the template exists within the given

image.

So, given this and given these two images f and g as given over here the cross correlation

matrix that I get is as given by the C f g. And if you look at C f g, this is the one which is

the maximum value. So, this is where I should expect that my template exists within the

given image. But if you look at this actually it is not so, this is which corresponds to this

maximum value 1, 0, 7, whereas my template actually exists over here which is not given

by this cross correlation.

So, what is the fallacy in my computation? The fallacy is when I am computing the cross

correlation at different locations, my template f is fixed, but template g is not. So, the

cross correlation value that you compute is actually biased by template g by the part of

the image, which is g. So, what I have to do is as I said that if one of the vectors is an

unit vector, then I actually get the similarity index. So, here I have to normalize the part

of the image given as g with respect to g itself, so that it is equivalent to a unit vector. So,

it is a normalized image.

(Refer Slide Time: 27:55)

So, what I have to do is I have to normalize the cross correlation by the value of g

squared x plus u y plus v this should be y plus sorry, it is not equal this will be plus. So, x

plus u y plus v g square of that take summation take square root of this so, with this I



have to normalize my computed cross correlation. So, that it becomes independent of the

value of g, which is variable. So, once I do that, let us see what we get.

(Refer Slide Time: 28:35)

So, for the given image if I compute this g square x plus u y plus v take the summation

over u and v and then square root of this, then this is the matrix that you get.

(Refer Slide Time: 28:49)

And now if I normalize by computed cross correlation with this normalization factor,

what I get is normalized cross correlation matrix. And in the normalized cross correlation

matrix, you find that this is the location where the normalized cross correlation value is



maximum. And corresponding to this, this is the location in the bigger image or it shows

that I have my template present in the given image and this is the perfect one.

So, what we have seen is in case of convolution, I get the response of the system to a

given input; in case of cross correlation, I get the similarity between two different images

or  two  different  signals.  In  many  cases  these  two  are  confused  the  reason  is

computationally the way you compute cross correlation and the way you compute the

convolution, they are similar. The only difference is in case of convolution, you have to

flip  your  kernel  around  vertical  and  horizontal  dimensions  before  you  compute

something very, very similar to cross correlation. So, in minimal of the books, you will

find that what the present as convolution is nothing but cross relation, and as I said that

computationally they are not different.

And I  also said that  both convolution and cross correlation,  we have discussed with

respect to discrete systems. This can very well be generalized to continuous systems,

where the summation will be replaced by the integration, and obviously, I will have an

integral term like dt, or dx, dy ok.

So, we will stop here today. So, I hope that you know, what is the difference between

convolution and cross correlation and with this starting from our next class, we will start

discussion on convolutional neural network.

Thank you.


