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Hello, welcome to the NPTEL online certification course on Deep Learning. So, we are

discussing  about  the  Autoencoder  or  the  different  types  of  autoencoder.  So,  in  the

previous lecture we have talked about what is known as sparse autoencoder and as we

have said, that in case of autoencoder we want the autoencoder to learn a compressed

domain representation of the input data or the autoencoder should learn salient features

of the input data, it should not just memorize the input data.

So, in case of sparse autoencoder where we have assumed that the number of nodes in

the hidden layer can be quite large or in some cases, it is it can even be larger than the

number  of  nodes  in  the  input  layer  or  the  output  layer,  but  the  compressed  domain

representation is enforced, by enforcing some constraint which we have said as sparsity

constraint. And, what is sparsity constraint? In sparsity constraint we have seen that what

we have restricted is the average activation of a node or a neuron in the hidden layer.

So, we have said that ifs a sigma j hat is the average activation of the jth node in the

hidden layer, then this average activation should be constraint or it should be equal to

some sparsity values, sparsity parameter, which is equal to rho, where rho can be say 0.1,

0.0, 1.2 and so on a very small value depending upon the extent of sparsity that we want

to impose.

So, for a given type of input data, if the sparsity constraint or the sparsity parameter is

very low say, for example, 0.01, then the number of nodes, which will be active in the

hidden layer for a given type of input is very small and most of the hidden layer nodes

will be inactive. If, we increase this sparsity parameter, that is make the value of rho

instead of 0.01 say make it 0.2, then the number of nodes which will be active in the

hidden layer, for the same input data will be larger than before.

So, if the sparsity parameter is 0.01, if the number of nodes which are active is the m, if I

make the sparsity parameter to be 0.5, the number of nodes which become active is n,



then it is quite obvious that n will be greater than m. So, depending upon the sparsity

constraint or the value of the sparsity parameter that you specify you are controlling the

number of nodes, which are to be which will be active in the hidden layer ok. So, in the

process,  the  network  learns  are  generalizable  encoding  decoding  scheme,  it  just  not

simply memorize the input data for reproduction later by the decoder part.

(Refer Slide Time: 03:59)

So, today or in this lecture what we are going to discuss about denoising autoencoder and

we will also discuss about contractive autoencoder and later on we will try to see some

applications of the auto encoder.



(Refer Slide Time: 04:13)

.

So,  what  is  denoising  auto  encoder?  So,  as  we  said  that  an  autoencoder  learns  a

generalizable encoding decoding scheme, it does not simply memorize the input data.

And, in the earlier case in earlier two types of auto encoders. In case of under complete

autoencoder, that was done by restricting the number of nodes of the input layer. In case

of  sparse  autoencoder,  it  was  achieved  that  is  generalizable  learning  or  encoding

decoding scheme was achieved by introducing a sparsity constraint, for the activation

function of the hidden layer nodes.

In case of denoising autoencoder, what you do is while training the neural network your

the training data is corrupted or it is perturbed and the perturbed data is fed to the input

of the autoencoder. Whereas, we expect that the output of the autoencoder should be the

original unperturbed data.

So, now for training purpose, because you are feeding the input data which is a perturbed

one or a noisy one whereas, I want the output data to be the original input or the original

data training data. So, now, there is a difference between input and output. The input is

perturbed data or noisy data output is original data.

So, because there is difference between input and output, this autoencoder or denoising

autoencoder cannot simply memorize the input data, because while learning the input

data and output data they are different. The input is the perturbed one, the output is the

original one.



So, it cannot simply memorize the input data. Rather in this training while being trained,

what the autoencoder learns is a vector field. So, it is a vector field that will map the

input  data  towards a  low dimensional  manifold.  So,  we will  come to what  is  a  low

dimensional manifold a bit later.

(Refer Slide Time: 06:29)

So, the training process is something like this. So, here what I have shown is say, this is

my autoencoder, where this portion is the encoder part. And, if my input vector is a some

X, then what this encoder does is it implements an encoding function, which is the f X.

And, this part is decoder part the decoder part decodes this encoded data.

So,  if  I  put  that  this  function  is  g.  So,  decoder  performs  g  of  f  x  and  that  is  my

reconstructed data x hat right. So, in case of this denoising autoencoder what we are

doing is suppose my original input data or original training data is x, I am adding noise

to it or perturbing this input data by a noise process or by perturbation process, to get a

noisy data which is X tilde.

And, this X tilde is fed to the input of the autoencoder. And, what I want at the output is

this X hat, where I want that this X hat should be this original X not X tilde; that means,

during this back propagation learning the loss function, that I want to minimize is not X

tilde, X hat, but the loss function that I want to minimize is what is L X X hat. Where X

is the original data and X hat is the reconstructed data, or reconstruct reconstructed X,

which is X hat encoded, then decoded.



So, I want that X hat should be equal to g of f of X tilde where X tilde is the corrupt data

or the perturbed data and I expect that this reconstruct reconstructed data, should be same

as my original data X. So, the loss function we are minimizing is L X X hat, where this L

X X hat can be a squared error loss, but that is what we want to minimize.

So, this is what this denoising autoencoder does. And, we have said that while doing. So,

the denoising autoencoder learns a vector field, a vector field that maps an input data to a

point on a low dimensional manifold.

(Refer Slide Time: 09:21)

So, let us see what is a manifold? Now, before coming to this figure just in simple term

so in any particular residential area, whenever we try to give the address of a building. A

building which is on a road say for example.

Student: (Refer Time: 09:42).

You name any road and we give a building number on that particular, road say a road

may be Bidhan Sarani.

Student: Oh.

And, we are simply specifying say 51 Bidhan Sarani. So, the moment you say 51 Bidhan

Sarani a person reaching Bidhan Sarani, that particular road can identify where that 51

Bidhan Sarani is. So, this address that you are giving is a 1 dimensional address right. On



the road you move in one direction come to the building which is number 51. So, 51

Bidhan  Sarani  uniquely  identifies,  your  building  on  the  road.  So,  this  is  an  one

dimensional address.

But,  the building is  not an 1 dimensional,  in a 1 dimensional  space.  The building is

actually  in  a  2  dimensional  space.  And  to  be  more  specific  the  building  is  in  a  3

dimensional space, because the surface on which we are residing, this surface is part of a

sphere or earth is nothing, but spherical approximately.

So,  this  surface is  in  3D,  but  mostly we approximate  that  in  2D,  because in  a  very

smaller region this can be considered to be a 2D surface, but again so, every building or

every place on this surface actually has a 2 dimensional address. I should specify the

latitude longitude, but instead of doing that I am simply giving the building number on a

road which is an 1 dimensional address.

So, that is, what is a manifold representation. A manifold is actually a very dense space

region embedded in a high dimensional space, where in most of the input data, of the

most of the sensible data resides. So, let us take another example with the set of these

images that we have shown. Suppose I want to create an image of dimension m by n. So,

as we told in our previous lectures that an image is nothing, but a vector into in and m

into n dimensional  space ok.  So, there are large number of vectors in that m into n

dimensional space.

So, if I try to generate any image in that m into n dimensional space by choosing every

pixel in that m m by n image at random. You find that in majority of the cases or in most

of the cases. The kind of image that will be generated is this kind of image, as we are

creating every pixel in the image at random.

So, in the majority or most of the cases the kind of image that will be generated is this.

And, the kind of image like this, or the kind of image like this, getting such a type of

image by this random selection of pixel values is almost negligible. It may be or may not

even be 0.00001 percent, which clearly says that I have an image space, which is m into

n dimensional image space, where every possible image of size m into n, m by n is a

point. If I choose a point at random, it is very likely that an image I will choose is this. It

is very very unlikely that I will have I will get an image like this.



So, that clearly shows that most of the space or most of the volume in that m into n

dimensional space represents images of this form, images of this form, not of this form,

or a sensible image or a set of sensible images like this, occupies are very dense low

dimensional space, which is embedded in the high dimensional space, which is m into n

dimensional space. 

And, this low dimensional space, which is very dense where in most of the input data or

sensible  images  in this  case they reside,  this  is  what is  manifold.  ok.  So, in  case of

autoencoder,  when  we  are  representing  input  data  in  a  compressed  domain

representation. This compressed domain representation is nothing but a set of points on

such manifolds right.

(Refer Slide Time: 14:57)

So, given this now, let us see that, what is this manifold learning? So, as we have said

that for training this denoising autoencoder, I am feeding a data, I am using a training

data X, it is quite likely that this training data X will belong to a manifold or it will be

taken from a manifold. Then, I am disturbing this data or perturbing this data to make it

data X tilde, which is the perturbed data.

So,  in  this  case  through  a  perturbation  process  or  noisy  process,  so,  this  data  X is

perturbed  to  X  tilde.  And,  using  this  I  am  training  the  autoencoder  and  what  the

autoencoder does is while training, my autoencoder output is as we have said before g of

f of X tilde and I want that this g of X of X tilde should be my X not X tilde.



So,  while  training  by  this  gradient  descent  procedure  or  back  propagation  learning

effectively the autoencoder learns a vector field. The vector field is that given any point

over here the autoencoder will try to move this data in a direction which is a nearest

point on this manifold.

So, this reconstructed x minus my original x that is what is the vector field. So, over here

this vector field or a vector field is represented by arrows which are in green color. So, I

have vector fields like this over here. So, if I give any training vector somewhere over

here, as the vector field in is in this direction and it is moving towards the manifold.

So,  this  data  which  is  given  over  here  will  ultimately  converge  or  ultimately  be

represented by a point on this particular manifold, which may be nearest to this input

data that was given, this is what is known as manifold learning. So, the advantage of

denoising autoencoder that we have just seen is that it prevents the autoencoder from

simply memorizing the input data, because for training the training pair the input and

output data is different.

But, in the process of training the autoencoder learns a vector field a vector field, which

helps the autoencoder to move any point in a space to a point a nearest point in a nearest

point on the manifold. Of course, this is possible in a space where the autoencoder has

observed some inputs.

 (Refer Slide Time: 18:15)
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If, I have a point far away from this autoencoder and I did not have any data any training

data over here. In that case my reconstruction error becomes quite large and it is quite

possible that, this point will not be converged to a point on the manifold, but this point

may go in the other direction as well.

So, in the region where the autoencoder has seen some training data, it learns a vector

field. In the region of course, where the autoencoder have not seen a data, it does not

have any idea of that particular area and it does not know what to do with that data.

(Refer Slide Time: 18:57)

So, that is what is manifold learning and a denoising autoencoder, learns a vector field

which eventually moves the input data to a point on the manifold. The other kind of

autoencoder that we are going to discuss is a contractive autoencoder.

The concept of contractive autoencoder is that, if the input data is very similar in that

case encoded output of all  those input data must also be very similar. So, that is the

concept of an autoencoder. So, for similar inputs the large encoding or the compressed

domain  representation  should  also  be  very  similar.  So,  this  is  what  is  the  basic

philosophy behind learning of a contractive autoencoder.

So,  you know order  to  do  this,  what  I  have  to  impose  is  that  the  activation  or  the

variation of the activations in the hidden layer activation of the nodes in the hidden layer,

the variation of these activations with respect to input data should be small. That is if the



input data should are given to input data, if they are similar there may be slight variation,

the activations in the in the hidden layer that would all should also be very very similar

ok.

So, by doing this what such a model or the contractive autoencoder learns is it learns to

contract a neighborhood of input to a small neighborhood of output right. So, as similar

inputs are encoded in a similar way and when you decode that the decoder output will

also be very very similar ok.

So, this ensures that similar inputs at the input or in a small neighborhood at the input

will  also be contracted  to  a  very small  neighborhood at  the  output  that  is  what  this

contractive autoencoder does. And, as we are saying that the kind of regularization that

we should impose in case of contractive autoencoder is that, the variation of the hidden

layer activation should be small with respect to the input data.

(Refer Slide Time: 21:35)

And that can be imposed by introducing a regularization again here the regularization is

on activations not regularization on the weight values, which has done in case of multi-

layer perceptron. So, here the regularization is on the activations. And, the regularization

term can be something like minimization of the Frobenius norm of the Jacobian matrix

of the activation functions in the detector. 



So, what is Frobenius norm? Frobenius norm of a matrix a as shown over here, if my

matrix is A, then Frobenius norm is a i j square where a i j is the i jth element of the

matrix  A,  take  the  sum of  all  these  squared  elements  over  all  the  elements.  That  is

summation over all i and summation over all j and take the square root of this, that is

what is Frobenius norm. And, the regularization term in case of contractive autoencoder

can be squared Frobenius norm of the Jacobian matrix.

Now, what is the Jacobian matrix? As we have seen that when we have taken gradient of

the loss function; the loss function over the scalar our weights were vectors right. So,

when you take the gradient of the scalar function with respect to your vector the gradient

becomes a vector. Over here for every hidden layer node, I have input which is a vector

or a data vector. And, if I have multiple nodes in the hidden layer, then the activations

taken together they are also vectors.

So, if I take the gradient of this vector with respect to input vector, it is a gradient of

scalar with respect to a vector that becomes a vector. So, gradient of a vector with respect

to vector should become a matrix. So, and that is what is Jacobian matrix. So, Jacobian

matrix actually captures the variation of different components of the output vector with

respect to the input vector.

So, the Jacobian matrix in this case is defined this way, suppose I have N h number of

nodes in the hidden layer. So, I will have N h number of activation values, 1 activation

value of every hidden layer node. And, by input data vector is the m dimensional there

are m components of the input data vector. So, the Jacobian matrix simply becomes like

this, a 1 h which is the activation of the first node in the hidden layer for input vector X.

So, it is del a 1 X a 1 h X upon del X 1 del a 1 h X upon del X 2 and so on. So, the first

row actually gives you the gradient of the output of the first node in the hidden layer with

respect to the input vector. Second row tells you the gradient of the output of the second

node of the in the hidden layer with respect to the input vector X and so on.

Similarly, last row gives you the gradient of the output of the N hth node in the hidden

layer with respect to the input vector. And, all of them together gives you what is the

Jacobian matrix. And, my regularization term now becomes a squared Frobenius norm of

this Jacobian matrix.



So, you find that this del X a i h X all of them together are nothing, but components of

this Jacobian matrix. So, this is, what is my regularization term. So, my back propagation

learning algorithm now should try to minimize this along with the data loss that I have

which is L X X hat right.

So, this regularization term ensures that variation of the activations in the hidden layer

nodes with respect to the input will be very small minimum, once the network is learned

property. And, that is what is our contractive auto encoder. And, as we said that this

contractive autoencoder  tries to contract a neighborhood of the input data to a small

neighborhood of the output data.

(Refer Slide Time: 26:45)

So, given this let us now try to see, what are some possible applications of such auto

encoder. One of the application is what is called in painting. The in painting says that, if I

have an original image where the original images corrupt in the sense that some region I

do not have any information in some region, or the information contained in some of the

regions some smaller regions is totally corrupted. So, you find that because autoencoder

learns a salient features of the image and from the salient features the decoder part can

reconstruct the image.

So, it is possible that autoencoder will be able to remove such corrupted regions from the

input image, which is the in painting as this shown here. So, here these black regions as

shown these black regions are another missing regions and by in painting you can cover



those black regions. So, this is one of the applications where the autoencoder can be

successfully applied.

The auto encoders can also be applied in abnormality detection. For example, I have a

surveillance camera; the purpose is to detect any abnormal event.  Say for example,  I

have a pedestrian road where only the pedestrians are supposed to move there should not

be any car on the pedestrian road.

So, when I train the autoencoder I train the autoencoder with only normal sequences,

where only the pedestrians are present. And, then when I impulse this autoencoder in the

test  sequence  if  any  car  comes  on  that  pedestrian  road,  because  while  training  the

autoencoder has not seen the car. So, the car cannot be properly reconstructed by the

autoencoder.

So, on the output side if I have if I can identify regions of the image frames, where the

reconstruction  error  is  very  very  large  as  we  have  said  that  car  cannot  be  properly

represented  cannot  be  properly  reconstructed,  as  car  was  not  seen  during  training.

Pedestrians were seen during training, so pedestrians will be properly constructed, but

not the car.

So, in that particular region the reconstruction error where the car is present is very very

high because it is not properly reconstructed. So, in the output video sequence whichever

region I find that the reconstruction error is very large, I can identify that in those regions

we have some abnormal activity taking place ok. So, this trained auto encoders can also

be used for such abnormality or abnormal activity detection.

And, as it is obvious from the denoising autoencoder that auto encoder; obviously, can

also be used for filtering purpose that is removal of the noise. So, there are many such

applications where auto encoders can be applied. So, we will talk about other models of

the deep learning other types of neural networks in our subsequent lectures. So, let us

stop today.

Thank you.


