
Deep Learning
Prof. Prabir Kumar Biswas

Department of Electronics and Electrical Communication Engineering
Indian Institute of Technology, Kharagpur

Lecture - 32
Autoencoder Variants I

Hello,  welcome  to  the  NPTEL  online  certification  course  on  Deep  Learning.  You

remember  in  the  previous  class  or  for  last  few classes  we are  discussing  about  the

Autoencoder. 

(Refer Slide Time: 00:43)

And in the previous class what we have discussed is about autoencoder training. And

there we have seen that for efficient training of autoencoders. What is better is to go for

layer by layer pre training and once the encoder is trained layer by layer, which we are

calling  as  pre training.  Then,  you introduce  the  decoder  part  and we can have final

training passes, which are end to end training. And what we have considered so far is a

type of auto encoder, which we said as under complete autoencoder.

And, in case of under complete autoencoder given an input vector, we want that the final

output of the autoencoder will be a reconstructed version of the same input vector; that

means,  ideally  the  input  and  the  output  they  should  be  identical.  Now,  given  this

requirement of an autoencoder, it is quite possible that the autoencoder in the process, we



will learn an identity function or it will simply memorize, whatever is the input vector

that is presented to the autoencoder. 

But,  that  is  not  the  aim  what  we  want  is  that  the  autoencoder  should  learn  or

generalizable encoding decoding mechanism. So, for that autoencoder has to learn some

structure or the salient features which are present in the input data. And, it should be

possible that those salient features are learnt in a compressed domain. Or in other words,

the encoder of the output encoder should learn a compressed domain representation of

the input data, where this compressed domain representation contains the salient features

of the input data. 

And, using these salient features of the compressed domain representation the decoder

part of the autoencoder should be able to reconstruct your original data, which is fed to

the input of the encoder. So, in case of under complete autoencoder that we have seen so

far this is achieved by introducing a bottleneck layer, which is the hidden layer and in the

hidden layer, the number of nodes or the neurons we have is much less than the number

of nodes in the input layer or the number of nodes in the output layer. So, in effect what

we have forced is that when the information passes through this autoencoder from input

layer  to  the  output  layer. In between it  passes through a bottleneck layer, where the

number of nodes is much less.

So, as a result you are restricting the autoencoder from learning us or simply memorizing

the input data that you are feeding, but the autoencoder learns a compressed domain

representation of the input data. So, that is just one version of the autoencoder, which we

have discussed, which is under complete autoencoder. So, there are other types of auto

encoders that we are going to discuss now. So, what we will be discussing is the sparse

autoencoder, the denoising autoencoder, the contractive autoencoder and so on. And of

course, as we said that a convolution auto encoder, we will deal sometimes later. 



(Refer Slide Time: 04:30)

So, first let us see that what is sparse autoencoder? So, as we have just said that, in case

of  under  complete  autoencoder.  The  autoencoder  learns  a  compressed  domain

representation or it  learns the salient interesting salient features of the input data, by

passing the information through a bottleneck layer. However, for learning the interesting

features, it is not necessary that I have to pass the information through a layer, a hidden

layer or a bottleneck layer, where the number of nodes is much less than the number of

nodes at the input layer. 

So, such interesting features can be learned even when the number of nodes in the hidden

layer is large. It may be same as the number of nodes in the input layer or even it might

even be larger than the number of nodes in the input layer. And even in such cases it is

possible to learn the interesting features in a compressed domain. And the way it is done

is you introduce a sparsity constraint.

So, a sparsity constraint is introduced on the hidden layer nodes and what this sparsity

constraint does is it penalizes the activation function of the hidden layer nodes. Or in

other words you are you are trying to restrict the activation of the hidden layer nodes in

the  autoencoder.  And  while  doing  so,  the  autoencoder  learns  a  encoding  decoding

mechanism, which relies on activating a small number of neurons. 

So, even though we have a large number of nodes or large number of neurons in the

hidden layer, but all  of them are not activated.  You are activating a small number of



neurons out of those large number of neurons. So, in effect individual neurons in the

hidden layer, effectively learn a particular type of feature of the input data. And different

neurons are activated for different types of features. And obviously, not all the nodes are

activated. So, that is what is done in case of auto in case of sparse autoencoder. And as

we are restricting the activation of the hidden layer nodes, so, that is done by using by

introducing a regularization term. 

So, you remember that when we talked about the back propagation algorithm, which

minimizes a cost function or a loss function. The loss function consisted of two terms;

one was the data loss term and the other component was regularization loss term. So, in

this  case  or  in  the  previous  case  when  we  talked  about  training  of  the  multi-layer

perceptron, the regularization term was on the weights or the weight values. So, there

you  remember  we  had  mod  of  w  square  where  w  was  the  weight  matrices  or  the

components in the weight matrix. 

So, the regularization in that case was on the weights, but in case of sparse autoencoder

as we are trying to restrict or limit  the activations of the hidden layer nodes. So, the

regularization that we are doing is on the activations, it is not on the weights as we have

done in case of MLP or Multi-Layer Perceptron. So, in this case the regularization will

be on the activations of the hidden layer node. 

(Refer Slide Time: 08:24)



So, let us see that how this regularization is done? So, suppose a j h as you see over here

is the activation of the j th node in the hidden layer h. And we assume that the type of

non-linearity or the non-linear activation functions of the nodes which are being used is a

sigmoidal activation,  a sigmoidal non non-linear function.  So, as it  is sigmoidal non-

linear function; that means, if this node a j h is active the output of the neuron will be

close to 1.  And, if  the node is  not activated for certain input,  then the output of the

neuron will be close to 0. And, that is what is your sigmoidal activation function. So, if

you remember a sigmoidal activation function which was something like this. 

So, the sigmoidal activation function was of this form, so as the value of x increases or

the  input  increases  the  output  of  the  sigmoidal  activation  function  goes  closer  to  1,

asymptotically reaches the value equal to 1 and as the input reduces, the output of the

sigmoidal function sigmoidal activation function asymptotically goes towards 0. 

So, that is what we are using over here we are assuming that the non-linear activation

function of the nodes are sigmoidal activation. So, if the node is active the output will be

close to 1, if the node is not active the output will be close to 0. And, given this I can

compute the average activation of the j th node. So, let me put this average activation of

the j th node as it is a sigma j hat or rho j hat.

(Refer Slide Time: 10:47)

So, the average activation of the j th neuron in the hidden layer is rho j hat where rho j

hat is nothing, but sum of a j h x i x i is the i th input vector right. So, the activation of



this j th node in the hidden layer h for an input vector x i and if there are m number of

such  input  vectors,  then  the  average  over  all  these  input  vectors  of  this  activation

function is nothing, but 1 upon m sum of a j h x i, where i varies from 1 to m. 

So, that is the average activation of node j or neuron j in the hidden layer h over all the

input vectors that we fit. And, given this we put a constraint that suppose I want, that

average activation of a hidden layer node should be equal to sigma, where this sigma

should be equal to rho the average activation of rho j hat should be equal to rho, where

this row is sparsity parameter. 

And typically it we impose this we assign we assume that this sparsity parameter is very

very small say something like 0.2 or even 0.02, maybe 0.5 depending upon the degree of

sparsity  that  we  want  to  impose  on  this  network.  So,  once  I  impose  this  sparsity

parameter and I want that the average activation of a hidden layer node should be equal

to this sparsity parameter, which is a constraint. 

(Refer Slide Time: 13:00)

Now,  using  this  now  I  can  introduce  a  regularization  term  as  we  said  that  this

regularization is on the activation this regularization is not on the weight values. So, the

regularization term can be as KL divergence between the two distributions one defined

by rho j hat and the other defined by rho. So, the regularization term now becomes this

that is rho log rho upon rho j hat plus 1 minus rho log 1 minus rho upon 1 minus rho j hat



take the sum over this  over all  the nodes in  the hidden layer. So,  I  assume that the

number of nodes in the hidden layer is equal to h.

So, this is the regularization term and this is what is the KL divergence between two

distributions  Bernoulli  distributions  given  by  rho  and  rho  j  hat.  So,  that  is  the  KL

divergence and in fact, this KL divergence gives you the distance between two different

distributions. So, given this now I can have a complete loss function for this parts at

autoencoder, which is defined as J sparse W; W is the weight values or weight matrix

components, which is now L X X hat, where this L X X hat is the data loss component.

So, this is what is the data loss component, where X is your input vector and X hat is the

output vector or the reconstructed X, which is the output of the autoencoder. 

And in addition to that I also introduce this KL divergence between the two distributions;

one given by rho the other given by rho j hat. And, this hyper parameter lambda this

represents that, what is the relative weight, that I am putting in between the data loss

component and the regularization loss component. So, this is what is regularization loss? 

So,  this  is  my  overall  loss  function.  And,  now you can  apply  the  back propagation

learning algorithm for minimization of the overall loss function. So, once I introduce this

regularization  loss,  which  is  given  by  this  the  KL divergence  between  distributions

Bernoulli distributions given by rho and rho j hat, let us see what is it is implication on

the back propagation learning or the gradient descent operation.

(Refer Slide Time: 16:16)



So, you remember that and this is what tells you that how the KL divergence between the

two distributions that varies. So, here you find that if I put rho, which is the constraint if I

put rho is equal to 0.2, the KL divergence. So, this side is the KL divergence between the

distributions given by rho and rho j hat. So, here you find that if rho is equal to 0.2, then

when your rho j hat is also 0.2, then the divergence is minimum and this is equal to 0.

And as the values between rho and rho j hat differs the divergence shoots off quite fast it

increases quite fast. 

So, when rho and rho j hat they are equal then the divergence is minimum and it is equal

to 0 ok. So, this is the implication of the KL divergence, which we said that it measures

the distance between two different distributions. So, as I was saying that what will be the

implication of introducing the scale divergence as a regularization loss in our overall loss

function. 

(Refer Slide Time: 17:36)

So,  if  you  remember  you  try  to  recollect  that,  when  you  talked  about  the  back

propagation learning of multi-layer perceptron’s, we had a term given as delta i k, where

delta i k consisted of the back propagated error from the subsequent layers ok, from the

output side towards in outside. So, this delta i k was the back propagated error, which is

basically a combination of errors from all those nodes or all those paths to which this i th

node in the k th layer was feeding the input.



So, all the errors so if the i th node in the k th layer is this. So, this is i th node in the k th

layer and it is feeding input to all different layers in the subsequent all different nodes in

the subsequent layer, then the error which is back propagated from all these paths, they

are accumulated together. So, that is what is given by this summation operation, they are

accumulated and then it is multiplied by the local gradient, which is O i k into O i 1

minus O i k, where O i k is the output of the i th node in this k th layer and for weight

updation this has to be multiplied by the input to this k th layer node, which is actually

output of a previously unknown. 

So,  this  is  a  term  which  we  had  used  in  back  propagation  learning  of  multi-layer

perceptron. And when we introduce this KL divergence between the 2 distributions, this

term gets modified by this ok. So, you find that this first part that summation, which is

the back propagated error term from the subsequent layers that remains as it is. 

And, additional term in this gradient descent procedure that comes into picture is lambda

times minus rho by rho j hat plus 1 minus 2 upon 1 minus rho j hat ok. Whereas we said

that  rho is  the average activation,  rho is  the constraint,  and rho j  hat  is  the average

activation of a node in the hidden layer. 

So, this is the modification or this is an additional term, which has to be introduced in the

back propagation learning. All other steps in the back propagation learning will remain

as it is. So, by introducing this the KL divergence, what we are doing is as the average

activation of the hidden layer nodes is being restricted. So, it is quite likely that most of

the nodes in the hidden layer will be inactive and few nodes in the hidden layer will be

active, for a given input data. If the input data is varied for some other input data, it is

quite possible that some other set of hidden layer nodes will be active while some other

set of the hidden layer nodes will be inactive.

So, as a result the individual nodes in the hidden layer, they are activated based on a

particular  type of interesting  or  salient  features  in  the input  data  or  we can say that

different nodes in the different in the hidden layer they are activated for different types of

features ok. Or in other words different nodes, learn, different types of features in the

input data. So, given an input data, if a kind of input features the k or is present in the

input data, then say k th node in the hidden layer will be active. Whereas, if the input



data contains a kind of feature say p, then p th node in the input in the hidden layer will

be active.

So, different nodes in the hidden layer they are activated for different types of features or

in other words the individual  nodes in the hidden layer, they learn different types of

features given in the input data and that is what is your sparse autoencoder. 

So, in case of sparse autoencoder as we have just seen that even though the number of

nodes in the hidden layer is large or maybe even larger than the number of nodes in the

input layer, but still it learns a compressed domain representation not simply remembers

the input data, but it learns a compressed domain impression, representation of the input

data  and that  compressed domain representation is  learnt  by introducing this  sparsity

constraint. So, that is what is our sparse autoencoder. Now, we talk about another type of

autoencoder, which is known as denoising autoencoder.

(Refer Slide Time: 23:18)

So, in case of denoising autoencoder, the concept is for training when have feed an input

data, instead of feeding an input data, you feed a corrupted version or slightly perturbed

version of the input data. So, why we want this, because as we said earlier, that our aim

is that the autoencoder should be sensitive enough to the input data, so, that it is able to

reproduce the input data.



At the same time the autoencoder should be insensitive enough to the input data that it

simply does not remember the input data, but it should be able to generate a compressed

domain representation of the input data. Or in other words the autoencoder will learn and

remember the salient features of the input data; it will not remember the input data as a

whole. 

That means the encoding decoding scheme, which is learnt by the autoencoder should be

generalizable  ok.  It  is  not  that  whatever  input  is  fade  it  will  simply  remember  or

memorize  that  input  data.  So,  for  doing  that  in  earlier  two  versions  in  over  under

complete autoencoder and sparse autoencoder, in case of under complete autoencoder we

had put a constraint on the number of nodes in the hidden layer. So, that the autoencoder

is forced to learn a compressed domain representation. 

In case of sparse autoencoder what we had done is we had put a sparsity constraint to

ensure that only a few number of nodes in the hidden layer, they are active for a given

data a type of input data not all  of them ok. So; that means, individual nodes in the

hidden layer they learn or they are active for particular type of features in the input data

ok. But,  in case of denoising autoencoder  what you are doing is  we are training the

autoencoder with a corrupt version or a perturbed version of the original data. Whereas,

we expect that the output from the autoencoder should be the original uncorrupted data.

So, now because your input and output they are different right. Input is a corrupted data,

output is uncorrupted original data. So, because the input and output they are different

and using this pair the autoencoder is trained the autoencoder cannot memorize that input

data anymore, because the input data and the target they are different they are not same.

And in effect what the autoencoder does is the autoencoder model learns a vector field. A

vector field, that maps the input data towards a low dimensional manifold.

So, we will come to what is manifold, we will see what is manifold and we will see that

how the  autoencoder  learns  this  vector  field,  so,  that  the  input  data  will  be  pushed

towards a point on a low dimensional manifold. So, we will come back to this denoising

autoencoder and other versions of the autoencoder in our subsequent lectures.

Thank you.


