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Hello, welcome to the NPTEL online certification course on Deep Learning. In previous

few  lectures  we  were  discussing  about  the  autoencoders.  And,  we  have  seen  that

autoencoder is an algorithm, which tries to learn a compressed domain representation of

the input data or it tries to learn the structure present in the input data.

And, in order to do that what you do is given an input data, you pass it through a neural

network which is; obviously, a multi-layer neural network, where you try to reconstruct,

whatever input you are feeding the same signal the same data you try to reconstruct at

the output, but while this information the data passes from the input to the output layer, it

passes through one or more hidden layers.

So, in the basic configuration we have seen that an autoencoder consists of one hidden

layer, where the number of nodes in the hidden layer is much less than the number of

nodes  in  the input  layer. That  is  a  configuration  which  is  known as  under  complete

autoencoder. So, as it passes through a hidden layer, which is also known as bottleneck

layer, the information which while it passes through the hidden layer having a lesser

number  of  nodes  than  the  input  layer,  the  network  learns  a  compressed  domain

representation.

What will happen if the hidden layer contains the same number of nodes as the input

layer or the number of nodes, which is even larger than the input layer? Later on of

course,  we will  see other configurations of the autoencoder where such thing is also

possible,  but  in  such  cases  the  autoencoder  will  learn  a  compressed  domain

representation, by intuitive (Refer Time: 02:34) some constraint, which we will term as

sparsity constant, we will come to that later.

But, so far what we have discussed is what is known as under complete autoencoder. So,

there if we assume that your number of nodes in the hidden layer is same as the number

of nodes in the input layer and; obviously, the same as number of nodes in the output



layer. And, or even more than that, in that case it is possible that autoencoder will simply

try to memorize the input data. And, the function that it will learn is a simply identity

function,  whereby wherever  is  there at  the input  the  same will  be reproduced at  the

output.

But, by putting a hidden layer having limited number of nodes known as bottleneck layer

as we have just said, the network is forced to learn a compressed domain representation

or the network is forced to learn the salient features, which are present in the input data.

And, that is the purpose of an autoencoder reconstruction of the input signal is not the

purpose of autoencoder. But the purpose of autoencoder is that it learns a compressed

domain representation, or it learns the salient features in the input data, and using this

salient features the decoder side should be able to reconstruct your original data.

So, we are actually interested when it comes to the application of autoencoder will come

to that a bit  later, we are actually  interested in the output of the hidden layer or the

bottleneck layer, which is a compressed domain representation. So, we have also seen

that as we are talking about the compressed domain representation, this is also nothing,

but what is known as dimensionality reduction.

So, if your number of nodes in the hidden layer is much less than the number of nodes in

the input layer, then in the compressed domain representation the dimensionality of the

latent  variable,  which is mapped from the input data the dimensionality of the latent

space data is much less than the dimensionality of the input data.

But, still the decoder should be able to reconstruct the input from that reduced data; so,

this is what is dimensionality reduction. And, we have also discussed in our previous

lecture, that when you talk about dimensionality reduction traditionally a very popular

method for dimensionality reduction is what is known as principal component analysis.

That is the input data is projected onto the eigenvectors into the Eigen space. And, if the

input data is projected into the eigenvectors; obviously, if you have a set of data which is

of dimension d, the number of eigenvectors will be d number of eigenvectors. But, for

every eigenvector there will be a corresponding eigenvalue. 

So, when you form the transformation matrix, you form the transformation matrix using

the  eigenvectors  as  rows  in  the  transformation  matrix.  And,  when  you  form  this

transformation matrix, as we have seen in your previous lecture that the first row in the



transformation matrix will be the eigenvector corresponding to the maximum eigenvalue.

And, the last row in the transformation matrix will be the eigenvector corresponding to

minimum eigenvalue. And in between all that rows are formed by eigenvectors arranged

in descending order of the corresponding eigenvalues.

So,  now  for  transformation  purpose  if  we  retain  only  few  number  of  rows  in  the

transformation  matrix  from the top.  So, we retain only one row. In that case your d

dimensional  data  is  transformed  into  a  one-dimensional  data,  which  is  nothing,  but

projection onto the eigenvector having my maximum eigenvalue.

If,  we  return  only  two  eigenvectors,  then  the  d  dimensional  input  data  will  be

transformed into two-dimensional principal components in Eigen space. And, we have

also seen through reconstruction with examples of reconstruction that the power of such

principal  components.  So,  we have seen with examples  that  even with one principal

component, it is possible to reconstruct most of the information present in the input data.

And, there we have compared the principal component analysis PCA with autoencoders. 

And, we have seen that in case of autoencoder, if we do not impose any non-linearity in

the neural; in the neural network, then your principal components and the autoencoder

outputs, they almost coincide. But, we have also discussed that autoencoders are much

more powerful than principal components, because of the presence, because the neural;

neurons  in  the  neural  network  are  capable  of  imposing  or  implementing  non-linear

functions.

So, as principal component analysis is a linear transformation from the input space to the

eigen  space,  autoencoders  can  give  you  a  non-linear  transformation.  So,  as  because

autoencoders can give us non-linear transformation, we can even represent non-linear

manifolds using the autoencoders, which is not possible using principal components. So,

you  have  seen  that  if  we  do  not  impose  the  non-linearity  in  the  neurons,  or  if  the

activation function of the neurons are linear, then autoencoder and principal component

analysis they become almost identical.

However, because of the presence of non-linearity  autoencoder  gives  us much better

representation in lower dimensional space than in case of principal components. So, that

is what we have discussed in our previous lectures.
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So, today what we are going to discuss about is how do you train a deep autoencoder. So,

we are talking about deep autoencoder training,  then subsequently we will talk about

other  versions  of  autoencoders  like  sparse  autoencoder,  denoising  autoencoder,

contractive  autoencoder  and  so  on.  And,  after  few lectures  we  will  also  talk  about

convolution autoencoder, but I will come to that topic after we discuss about convolution

and convolution neural network.

So, let us start with how do we learn a deep autoencoder. So, as we told before that in

case of deep autoencoder an instead of having only one hidden layer, we have stacks of

hidden  layers  placed  one  after  another.  So,  that  is  what  is  nothing  but,  stacking  of

different autoencoder layers. And, the depth of the network depends upon, how many

such autoencoder layers, you have in your auto encoded neural network.
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So, a typical figure of a deep autoencoder is something like this. So, here you find that

we have our, this input layer;  so, this is the layer which is input layer. So, you have

feeding your input data X to this input layer. So; obviously, the number of nodes in the

input layer we have also told that before is same as the number of elements in vector X

plus 1, why that additional 1, because we also wants to incorporate the bias term in the

same layer.

So, if the dimensionality of the input vector X is D number of nodes in the input layer

will be D plus 1 so, this is what we have discussed before. And, then you find that we

have a number of autoencoders.  So,  I  can call  this  one as say the first  autoencoder;

autoencoder 1, this is the autoencoder 2, this is autoencoder 3 and so on. And, here in this

configuration I get the coded output or the reduced dimensional representation, which is

also known as latent space representation at the output of autoencoder 3.

Of course, each of these autoencoders will give a reduced dimensional representation

both the same input, but at different levels. So, output of autoencoder 1, what you get

here is also a coded version of input vector X, output of autoencoder 2 is also a coded

version of input vector X; here this is also a coded version of the input vector X, right.

So, this is where we get maximal dimensionality reduction. 

And, once I have this coded output, the coded output is decoded by this decoding layers,

again I have a number of decoding layers to get my reconstruction or the reconstructed



signal exact. Same case of autoencoder what he said is we try to reduce the error between

X and X hat or the loss function in this case is L X, X hat, which we have also said that

the loss function that can be defined is sum of squared error. That is, what is the error in

the construction of X hat, when you compare that with input X. And, training of the

autoencoder or deep autoencoder we will try to reduce this error the sum of squared error

to a minimum value.

So, you find that in case of autoencoder we have also said before, that I have an encoding

part so, this is a portion which is encoding and this is a part of the autoencoder which is

decoding. So, I have an encoding portion and I have a decoding portion and these two

taken together forms an autoencoder. And, the depth or the number of layers that you

have auto, that you have within this on autoencoder that tells you that what is the power

of the autoencoder, ok.

Now, so, given this that as we said that for training such autoencoder I want to minimize

the loss or minimize the error between the input vector X and the reconstructed vector X

hat. So, what I want ideally is the reconstructed X hat should be identical with my input

vector X. And, that has to be done using the back propagation learning algorithm that we

have talked about earlier.

Now, you find that the number of weight vectors or number of weight matrices or the

number of elements;  weight  elements,  that  you have to  determine  by training  of  the

autoencoder is tremendous. So, I have weight matrix W 1, I have weight matrix W 2, I

have weight matrix W 3, on the encoder side on the decoder side I have weight matrix W

3  hash,  W 2  hash  and  W 1  hash.  And,  the  number  of  weight  matrices  will  go  on

increasing with the depth of the autoencoder that is the deeper the network is the number

of such weight matrices will go on increasing.

So, if I try to train this entire autoencoder end-to-end that is given the full autoencoder

architecture, I have the set of training vectors given to the input, I have X hat as the

output and by reducing the error between X and X hat, if I try to train this autoencoder.

Then, I have to deal with so many weight matrices simultaneously.

And, that leads to a problem, one is obviously, the memory problem that I have to save

so, many weight elements into the memory. The other problems are that if the weights

that you have is close to the solution weights the convergence of the learning algorithm



is quite easy, but if the weight elements are too large then finding a global minimum

becomes a difficulty. And, on the other hand if the weight elements because initially all

of them are chosen at random so, if the weight elements becomes too low in that case the

convergence of the learning algorithm becomes very slow. 

So, to avoid this problem the kind of approach for training or deep autoencoder can be

that you go for a stage called pre-training, which will be finally, refined with end to end

training mechanism, but before going for that to reduce your complexity. You go for pre

training, and this pre training is done layer by layer; that means, while pre training you

deal with lesser number of weight matrices. So, let us see that how we; how it is actually

done?

(Refer Slide Time: 16:58)

So, we are talking about the layer by layer pre training mechanism. So, while doing this

you I take only one layer of autoencoder at a time. So, as before I have this input layer,

where  the  input  vector  X  is  applied  and  I  take  initially  only  one  autoencoder  say

autoencoder layer 1. And, then I put a decoder, which decodes the coded output from

autoencoder 1. So, because I have only one layer this decoder output should be same as

reconstructed X so, I call it  X hat. And while training this first autoencoder or while

trying to determine what will be the value of W 1, you go for back propagation. And, this

back propagation will try to minimize the error between X and X hash; X and X hat and

while doing so, it learns the weight vectors W 1.
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And, once this weight vector W 1 is learned then you discard the first level of decoder

that we have used and discarding this now I put a second autoencoder. Now, before that

you find that  is  a output  of  the  autoencoder, which encodes  X is  say a  latent  space

vectors Z 1. So, the next level of autoencoder, we will try to encode this Z 1. So, I put the

second autoencoder and let me call this second autoencoder as AE 1, AE 2 sorry.

So, this AE 2 we will try to encode Z 1 and while doing so, it will try to learn the weight

W 2 or weight matrix W 2. So, to train AE 2, now what I do is I put another decoder of

course, these decoders I am putting, they are all intermediate finally these decoders will

not be there.

So, I put another decoder and this decoder tries to decode the output of autoencoder 2;

that means, it will try to reconstruct Z 1, which is input to autoencoder 2 and I call this Z

1 hat.  And, for this  learning,  the back propagation  learning it  will  consider  only the

autoencoder 1, autoencoder 2 and the decoder that we have used. And, while training this

it will try to minimize the error between Z 1 and Z 1 hat. And, once that training is

complete that learning is complete what we have learnt is the weight matrix W 2. And,

once weight matrix W 2 is learnt, you remove this second decoder that we have placed.
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And, there the autoencoder 2 let me assume the output of the autoencoder 2 is Z 2. And,

after got this I put the third autoencoder say AE 3, this is third autoencoder AE 3. So,

now, we have to train this third autoencoder; that means, we have to find out that what is

the weight matrix W 3.

So, again for training this I put another decoder over here and this decoder will decode

the output of autoencoder 3. So, you find that the input to encoder 3 was Z 2 which was

the output of autoencoder 2. So, this last decoder that we are talking about these decoder

will try to decode this Z 2 would it by autoencoder 3 to give you Z 2 hat. And, for doing

this the layers, which are involved is only these layers. And, it will try to minimize the

error or the loss function between Z 2 and Z 2 hat or L Z 2, Z 2 hat.

And, once that is trained so you find that we have the pre trained values of W 1, W 2 and

W 3, and if I assume that this is the last  autoencoder layer that we had in our deep

autoencoder then the next part comes is the decoder part. So, to state the decoder so,

what I have to do is I have to again remove this autoencoder I have to have a decoder

part. So, the decoder that you put is this by wrapping the encoder side. And, by taking the

corresponding  weights  in  the  decoder  side  you  take  the  transposes  of  the  encoder

weights.



(Refer Slide Time: 22:02)

So, this forms the total autoencoder or the encoder decoder pair, which forms the total

autoencoder. So, here you find that W 1, W 2 and W 3, they were pre trained by using

layer by layer mechanism; layer by layer learning mechanism. Now, I have this decoder

also forming a full autoencoder and, now you go for fine tuning or finer training of the

weight vectors, for that on the decoder side you initially assume that the weights are W 3

prime, W 2 prime and W 1 prime.

Now, you try to train this entire autoencoder chain using end to end training mechanism,

that is you feed your training vector X to the input, output of the autoencoder becomes X

hat which is the reconstructed value of X and by back propagation learning you try to

minimize the loss function between X and X hat which is L X, X hat. And, here you find

that because the encoder side was pre trained so, the values of the weight matrices W 1,

W 2, W 3 are close to the actual values.

And, while you go for this end-to-end training now we have set of values, which are very

close  to  the  actual  the  convergence  of  this  training  algorithm  is  much  better  than,

convergence of the algorithm if we try to train the intern network at a time. So, this is

what is layer by layer pre training. So, what we have to do is after the pre training is

complete we have to introduce the decoder part and then for fine tuning of the pre trained

weights I had to go for one or more iterations for end to end training, giving the input as

X and  the  output  encoder  output  of  the  autoencoder  X hat,  try  to  reduce  the  error



between  X  and  X  hat,  using  the  gradient  descent  or  back  propagation  learning

mechanism. So, that will  ensure the convergence to be faster and likely to attain the

global minimum of the loss function.

So, this is what is the pre training the layer by layer pre training of autoencoder. Now,

suppose my autoencoder is trained. So, what the autoencoder is giving me, giving an

input X. The encoder side actually gives me say a function f of x, that is my encoding

function and say decoding let me call it a function g so, this gives me decoding of f of X.

So, what is my X hat? X hat is nothing, but g of f x. So, the training mechanism try to

minimize the error between f x and g of f x, and that is how you try to find that X and X

hat will be identical when the autoencoders properly trained, ok. 

So, given this as we said before that we are not really interested in the reconstruction

part, I have input X what do I do with X hat, that is not my m, but my m is actually the

output of the autoencoder. That is the latent space representation of the reduced space

representation that I get from X, and as we said that what I get at the output of the

autoencoder say, let me call this as output vector h, which contains the salient features

present in X, after discarding the redundancies or non-salient features which are present

in X. So, h will contain the salient features and that is in the reduced dimension. So,

using h how I can go for further applications. 

(Refer Slide Time: 26:41)



So, one of the applications  that can be there are various applications.  So, one of the

applications can be say classification. So, what I have is I have input vector X so, this

input vector X, the output of the autoencoder gives me h, and here this h can be fed to a

classifier for classification. It is not necessary that classifier; this classifier has to be a

neural network, it can be any classifier, it can be a support vector machine, it can be a

base classifier or whatever which we have discussed earlier. But, let us assume that we

have a neural network we have talked about multi-layer perceptron before.

(Refer Slide Time: 27:28)

So, I can feed a multi-layer perceptron or MLP over here. So, the input to MLP is h and

output of the MLP is the class identification of h or eventually the class identification of

the input vector X. So, now, find that what the autoencoder does is it  gives a coded

output h of X, it does not give you what is the class belongingness of h or what is the

class belongingness of X. So, if for the training vectors the class belongingness of X is

also known that is the training vectors are given in the form of x, y, where x is the input

vector and y is the class. Then, again I can go for an end-to-end training fine with finer

refining of the weight matrices W 1, W 2, W 3.

And, now these training these back propagation training, we will consider the output of

this MLP or we will consider the loss function with the output of the MLP, that also we

have seen before,  it  can be cross entropy, it  can be again sum of squared error. So,

various such output error functions so, the loss function can be defined, which is defined



at the output of the MLP depending upon, whether the class say y hash, which is decided

by this MLP taking this h that matches with y or not.

If it matches with y then there is no error or no training required, if it does not match

then;  obviously, we have to  obtain  this  entire  neural  network with back propagation

learning again. And, during that time also this W 1 to W 3, this encoder weight matrices

can be defined further, this is one of the application. The other application can be even I

can go for say pixel classification or segmentation operation of an input image.
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So, for that what I can do is suppose I have an image an input, you take various patches

of this input image convert that into a vector and feed that to the input. And, as we have

seen before that output of the autoencoder will contain the salient features of each of

these image blocks that is what the autoencoder is doing.

And, then at the output again I put a classifier, what this classifier will do it will put this

input matrix, the input image or patch of the image into one of the classes. And, if that

class  and  using  that,  again  I  can  form an  error  function  or  a  loss  function  and the

autoencoder can again be trained using this loss function.

And, finally, once the autoencoder is trained again, now we have feed an input image

again feed all the different blocks of the input image to this autoencoder, the autoencoder



will give a salient or the latent space representation of each of the blocks and the blocks

can be classified by this trained M L P.

So, thereby I can classify each and every block in the image which is nothing, but a

segmentation operation. I can also consider this to be a pixel by pixel classification or the

semantic segmentation of the input image. And, for that what I can do is given and patch

in the image, whatever representation I am getting at the output, I can consider that this

is the salient features of the central pixel of this patch. So, this is my central pixel. 

So,  this  classifier  output  basically  classifies  the  central  pixel.  So,  as  I  take  different

blocks  of  the  image  and  pass  it  through  the  autoencoder  and  classifier  chain,  the

classifier output will classify each and every pixel, which is the center of the block. So, it

will  classify  each  and  every  pixel  within  the  image  to  different  classes.  So,  the

classification  of  pixels  to  different  classes  is  nothing,  but  segmentation  of  the  input

image.  So,  the  input  image  or  the pixels  of  the  input  image are  now classified  into

different  class, and all  the pixels belonging to the same class that forms a particular

segment.

So, today what you have discussed is that how you can train an autoencoder we have

talked about  layer  by layer  training of the autoencoder,  and once the autoencoder  is

trained what can be possible applications of such autoencoder. So, we will  stop here

today.

Thank you.


