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Hello welcome back to the NPTEL online certification course on Deep Learning. So, in

our  previous  class  we  have  started  discussion  on  Autoencoder  versus  Principal

Component Analysis.

(Refer Slide Time: 00:44)

So, what we had discussed in the previous class is how you get the principal components

from the covariance matrix of the input data. So, let me just briefly tell you what we have

discussed  in  the  previous  class.  So,  that  our  platform for  discussion  on comparison

between autoencoder and principal components becomes complete.



(Refer Slide Time: 01:09)

So, what we presented in the previous class is that given a set of your input vectors X,

where X we have considered to be a vector set of vectors X 1, X 2 up to say X N, having

N number of population where each of this vector X is of dimension d; that means, there

are d number of components in the feature vector. Then, first you find out the covariance

matrix from this set of input vectors.

So, the covariance matrix is given by C X is equal to expectation value of X minus mu X

into X minus mu X transpose, where this mu X is the mean of the input vector. So, mean

mu X is equal to sum of X over all X, where X is the set of these vectors. Once, you

form this covariance matrix C X, then for from this covariance matrix C X is compute

the eigenvectors and the eigenvalues. So, I have set of eigenvalues lambda i, where i

varies from 1 to d as d is the dimensionality of the feature vectors. And for each lambda

i, I have the corresponding eigenvector e i.

And, once I had this e i either set of eigenvectors, then we had formed our transformation

matrix A, where A was formed as with the eigenvectors e’s as rows. So, the first row was

e 1, the second row was e 2, and the last row was e d. And, these eigenvectors were

arranged in rows in such a way, that here lambda i or the lambda 1 is greater than lambda

2 and so on it is greater than lambda t.

So, an eigenvector corresponding to the maximum eigenvalue is put as first element or

the  first  row in  my transformation  matrix,  and the  eigenvector  corresponding to  the



minimum eigenvalue  is  put  as  the  last  row in the transformation  matrix.  So,  all  the

eigenvectors  are  actually  arranged  in  rows  in  order  of  the  descending  order  of  the

corresponding eigenvalues.

(Refer Slide Time: 04:11)

So, once I define this transformation matrix, then I have a transformation which is given

by Y is equal to A into X minus mu X. And, this transformation is what is known as K L

transformation. And, from the nature of this transformation, you find that X is an input

vector and A is the transformation matrix, where every row in this transformation matrix

of the eigenvectors. So, every component of Y is nothing, but projection of the vector X

minus mu X on to the ith eigenvector, which is the ith row in this transformation matrix. 

So, ith component of my transform vector Y is nothing, but the projection of the vector X

minus  mu  X  onto  the  ith  eigenvalue.  And,  these  components  of  the  vector  Y, the

transform vector Y is are nothing, but my principal components. And, you will find that

these principal  components  are nothing, but the transformation of the input vector X

shifted  by mu X onto  the  eigenvector. So,  this  transformation  basically  gives  you a

mapping from the input space to an eigen space. And, as we said the eigenvectors been

orthogonal, eigen space is also orthogonal. 

So, effectively what is the transform and the way you obtain the data reduction is that in

the transformation matrix A, where A is of dimension d by d right; it has d number of

rows d number of columns. So, if I reduce the number of columns from the bottom, that



is  I  remove columns corresponding to  minimum eigenvalues  that  ensures  that  in  the

reconstruction I will have minimum amount of error. So, that is the different analysis

which is beyond the scope of this lecture. So, I assume that I truncate this transformation

matrix A, by reducing some number of rows from the bottom. 

So, what I do is I make a transformation matrix A with say p number of rows and of

course, d number of columns I am not reducing the number of columns, where this p is

much much less than d. So, using that when I go for this transformation Y is equal to A

into X minus mu X, this vector a that you get that will have p number of components.

And, if I do not go for any truncation this vector a will have d number of components.

So, as I reduce the number of rows my in my transformation matrix I go for reduction of

the dimensionality ok.

But, this reduction is done in such a way by removing the eigenvectors in such a way,

that when I try to reconstruct my original X from Y by an inverse transformation. So,

from here; obviously, X will be A inverse Y plus mu X. So, as in transformation matrix

A, I am not retaining all the components or all the rows. So, obviously, the reconstructed

X that I will have will not be actual X, but it will be an approximation of X which is X

hat ok.

So, this is what I get after reducing the dimensionality. So, as PCA gives you reduction in

dimensionality  and  we  have  also  seen  that  autoencoder  gives  you  reduction  in

dimensionality. So, whether we can have some relation we can establish some relation

between PCA and autoencoder. We will come to that a bit later, but before that let us try

to see what this PCA is actually giving you.
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So, to further illustrate the principal components I have taken this binary image. So, here

you find that it is a binary image or all these elements, which are blue these are one; that

means, I can say that I have pixels present in this location in these locations I do not have

any pixel. So, I can form a vector with only the pixel locations where the pixels are

present. So, accordingly my population of vectors will be given by this 3 4. So, this is 3 4

right, sorry this is 4 3 0 1 2 3 4 0 1 2 3. So, this is 3 4 3. 

Similarly, this  is  the  vector  which  is  3  4 and so on.  So,  all  vector  positions  all  the

positions  so;  however,  I  have  a  pixel  present,  I  take  those  positions  as  my  vector

population. And, from this set of vectors I compute the mean of the vectors which is mu

X and in this particular case you can compute that this mean vector will be 4.5 4.5. So,

once I have this computation now as we said before that for principal components or for

K l transformation I need to have the covariance matrix.



(Refer Slide Time: 09:44)

And, we defined covariance matrix as expectation value of X minus mu x into X minus

mu x transpose. So, here I have a very small example. So, from here if I try to compute

that covariance matrix so, the covariance matrix 4 I take this as my first vector X 1. So,

X 1 minus mu X so, mu X was 4.4.5 4.5, if you subtract 4.5 4.5 from 3 4 what you get is

your X minus mu X becomes minus 1.5 minus 0.5. So, X minus mu X my into X minus

mu X transpose, if you do this multiplication, it simply becomes 2.25 0.75 0.75 sorry

yeah 2.25 0.75 0.75 and 0.25.

So,  that  is  for  the  first  vector  in  my vector  population  that  I  get.  Similarly, when I

compute X 2 minus mu X into X 2 minus mu X transpose in the same manner, that will

give you 0.25 0.75 0.75 and 2.25, you can compute this and verify. So, this way you have

compute X minus mu X into X minus mu X transpose for all the vectors that we have in

set of vectors X. And, the expectation value is nothing, but average of these matrices that

you are getting for each of the vectors I am getting X minus mu X into X minus mu X

transpose.  So,  in  this  particular  case  I  have  8  such  vectors.  So,  I  will  have  8  such

matrices and the average of all those matrices gives you the covariance matrix.
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So, covariance matrix in this case is nothing, but if you compute that will come out to be

the  covariance  matrix  C x equal  to  0.75 0.375 0.375 and 0.75.  And,  from here  you

compute the eigenvalues  as I  said that it  will  be the determinant  0.75 minus lambda

0.375 0.375 and 0.75 minus lambda, you said this determinant equal to 0. So, you get a

quadratic equation in lambdas you solve that and you get 2 values of lambda, lambda 1

comes out to be 1.125 and lambda 2 comes out to be 0.375. And, for these values of

lambda you compute the corresponding eigenvectors as we said that the eigenvectors

will be nothing, but C x e is equal to lambda e.

Where C x is your covariance matrix e is the eigenvector and lambda is the eigenvalue.

So, you solve those equations you get your eigenvectors. So, it comes out to be that in

this particular case your e 1 for eigenvalue lambda 1 comes out to be one upon root 2 11.

Similarly, e 2 for eigenvalue lambda 2 comes out to be one upon root 3 1 minus 1. Now,

what  comes  next  is  the  interesting  one  that  is  we  want  to  see  that  what  are  this

eigenvectors?
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So, I simply superimpose this eigenvectors in the same image space. Here, so, here you

find that if you look at this, you find that in the direction of e 1. If, you look at this

direction this is the direction in which your spade of data is maximum right and that is

what we said that lambda 1, that is the eigenvalue indicates that what is the variation of

data in that direction of the corresponding eigenvector.

 Are  similarly  lambda  2  this  tells  you that  the  variation  of  data  in  this  direction  is

minimum right. So, I get lambda 1 and lambda 2 and here again you find that this sorry e

1 and e 2 and here again you find that e 1 and e 2 they are actually orthogonal, and they

are centered at the centroid of the pixels. So, that also says that a K L transformation is a

transformation, which gives you translation and rotation operations. Because, e 1, e 2 are

nothing, but rotated X 1 X 2.

And, this coordinate system e 1 e 2 is translated to the mean of the vectors that we have.

So, this also gives you the rotation and translation transformation right. Now, coming to

the concept of your principal components, so, what are principal components over here?

So, I have data point this. If, I take the projection of this data point see if I take the

projection of this on to e 1. So, this  is the projection on e 1 and this  is what is the

principal  component?  Similarly,  if  I  project  this  onto  e  2  this  is  also  the  principal

component.



So, this is the first principal component and this is the second principal component. If, I

wanted to represent this  by a single dimension or by scalars,  I will  not consider the

projection  onto  e  2  rather  I  will  consider  only  projection  onto  e  1,  because  e  1

corresponds  to  the  eigenvalue  which  is  maximum  so,  this  is  my  first  principal

component.

So, to think of this in other way the principal components or the K L transformation is

actually a linear transformation. So, whatever doing is given your input vector input data

you  are  linearly  transforming  it  to  your  principal  components  right.  So,  principal

components  gives you a linear  transformation  or linear  mapping from the input data

space to the output data space. So, if I want to retain only one component you find that

that component is nothing, but projections onto this eigenvector e 1. 

So, you have project a projecting onto a line. If, I want to retain two components; I want

to convert the input data into two principal components, by this principal component

analysis I will take projections onto e 1, I will also take projections onto e 2; that means,

every vector will now be mapped to a point in the plane e 1 e 2. So, this transformation is

a linear transformation. So, given this now can we try to establish that what will be the

relation between the principal component analysis and auto encoders.

(Refer Slide Time: 16:57)

So,  both before  that  just  to  illustrate  what  is  the power of  this  principal  component

analysis of the principal components, you find that this is just an illustration that I have



this input image. So, this is the original input image. And, this is the image which has

been  reconstructed  using  only  one  principal  component.  And,  you  find  that  the

reconstruction  is  amazing.  So, that  simply says that  principal  components  retains  the

structure of the data, instead of one this original image is actually 256 by 256 number of

pixels. So, you find that reduction is from 256 to by 256 to 1. 

So, the amount of compression that has been achieved instead of 1 if I use 5 principal

components then this is the reconstruction that you get. Instead of 5 if I use 25 principal

components and this is the reconstruction that you get. So, here you can imagine what is

the amount of compression that you are getting or what is the compression amount of

compression that you are getting over here, 256 by 256 is to 256 is to 25. So, that shows

you, what is the power of the principal components? So, this principal components using

principal components I can go for dimensionality reduction. 

And, as we have seen that  using auto encoders  also we can go for  a  reduction.  So,

definitely I can establish some relation between these 2. So, what we have seen is in case

of principal components this is a linear transformation, from N dimensional space or say

d dimensional space, you are transforming it to say 2 dimensional space or 3 dimensional

space depending upon the number of principal components that you want to use. And,

this mapping is a linear mapping.

(Refer Slide Time: 18:02)



As  against  auto  encoders  being  neural  networks  which  can  implement  non-linear

functions. So, the kind of mapping that we can use in case of auto encoders is a non-

linear mapping; that means, in other words we can say that the principal components or

the  auto  encoders  can  be  thought  of  as  generalization  of  principal  components.  So,

whatever principal components analysis can do auto encoders can also do the same thing,

but autoencoder can do something more, because here I can have non-linear mapping not

simply linear mapping whereas, in case of principal components we have only linear

mapping ok.

(Refer Slide Time: 19:51)

So, this is what I just said that given a set of data, which are just rate dots in this figure

and I want to convert this set of data using principal component analysis into principal

components.  So,  if  I  use  just  two  principal  components;  PC  1  and  PC  2  I  am

transforming this set of data into on to a straight line as given by this pink line right. So,

this is sorry I am transforming this set of data onto a plane as defined by PC 1 and PC 2.

And, this being a linear transformation or linear mapping, what I can do is given this set

of data this can be approximated on a straight line or the straight line is defined in space

PC  1  PC  2  whereas,  autoencoders  are  capable  of  going  for  imparting  non-linear

transformation.

So, using auto encoders I can even go to establish or to extract the non-linear structures

which are present in the data. So, it is possible the same data or autoencoder will learn



the inner structure which is not just a linear, but it is non-linear as shown by the blue

curve. So, all the set of data points with your red points can now be represented by points

on this blue curve whereas, principal components will represent this set of data by points

on the pink line.

(Refer Slide Time: 21:39)

So, we will present some experiment from this particular source which is given at the

bottom. So, these experiments are done on MNIST data set and NIST data set which is a

public domain data set. Which has total this data set is actually data set of handwritten

digits from 0 to 9, it has total 60 000 training images and total 10 000 test images all

handwritten digits, every image is of size of dimension 28 by 28; that means, it has got

784 number of pixels. So, when you think in terms of autoencoder at the input side will

have 784 plus 1 to take care of the bias 785 number of neurons.. 

Dimensionality reduction from 784 to 2 so using autoencoder as well as PCA and then

we  will  also  talk  about  the  reconstruction  from  the  reduced  dimension,  where  for

deconstruction the dimension was reduced to 30 from 784. For dimension dimensionality

reduction  demonstration  it  was  reduced  to  2,  because  the  plane  on  which  will  be

projecting this data or to dimensional planes. So, if it is reduced to 2 dimensional data

then projection is I can visualize it, then the other things that optimizer, which is atom

optimizer, we will come to that later we have not yet talked about the different types of



optimizers. The loss function that was considered is mean square error that we said and

for training 100 iterations was used. So, this is what is the experiment setup.

(Refer Slide Time: 23:30)

Now, what is them this is an example of the MNIST data set I was as I said that these is

data set of handwritten digits from 0 to 9 ok. And, again this is taken from the source as

given at the bottom.

(Refer Slide Time: 23:47)

Now, for this data set, the data reduction was done using principal component analysis to

2 dimensional data, you remember our input was 784 right. So, is in principal component



analysis it was reduced to 2 dimensional vectors and also by using auto encoders it was

reduced to 2 dimensional vectors, but in this particular case no non-linearity was used the

activation function of the neurons was a linear function.

And, as is shown in these two data set, these two outputs you find that the output as

given by PCA is almost identical to output as given by 2 layer it autoencoder, which has

just one hidden layer right hidden layer and then output layer they are almost identical.

So, and this is what we said that principal component analysis is our data dimension

reduction  technique  auto encoder  can also be thought  of as dimensionality  reduction

technique.

So, somewhere there must be a relation between these 2 and this is what ok. So, you find

that in some case PCA and auto encoders they give you identical results. Of course, will

have difference of results as we said that, auto encoders are more general than principal

component  analysis,  because  auto  encoders  can  impose  can  implement  non-linear

functions ok.

(Refer Slide Time: 25:30)

So, let us see what other results that we can obtain. So, this is a comparison between

deep versus shallow autoencoder. So, on the left hand side what is shown as the output of

2 layer of encoder and on the right hand side what is shown as a deep autoencoder. And,

here  you  find  that  a  deep  autoencoder  having  multiple  number  of  layers  as  the

architecture of the deep autoencoder is shown on the right.



So, deep autoencoder with multiple auto encoding layers or decoding layers can capture

the structure of the data better, and that is where the beauty of the auto the or the beauty

of the deep learning comes.

(Refer Slide Time: 26:19)

Coming to another example so, if we have, so in the previous case the output was from

deep autoencoder without any non-linear activation function. Now, find that if we use

non-linear activation function in a deep autoencoder, then as shown in this diagram on

the right, the deep autoencoder with non-linear activation function can even capture the

structure of the data better. So, here you find that the different digits this is 0 yeah this is

actually 0 set of 0s, here it is set of 1s and so on.

So, it can capture the inner structure of the data even better than shallow autoencoder ok.

So, that is what is the beauty of auto encoders with non-linearity it can understand or it

can learn, the inner structure of the data much better.
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This is another example, where it was a data reduction from articles from Reuter corpus

those kind images  were reduced to 2 dimensional  data.  So,  here again you find that

autoencoder as compared to principal component that has captured, the inner structure

much better than, what the principal components can do?

(Refer Slide Time: 27:49)

This is just another reconstruction example where we say that for the reconstruction that

data  reduction  was  done  up  to  dimension  of  30.  So,  from  784  it  was  reduced  to

dimension 30. So, here the top row gives a what was the original image, in the middle



row you have the reconstruction using autoencoder or the auto encoders architecture is

given over here. And, the activation function was ReLU that is rectified linear unit and

the bottom row is the reconstruction using principal component analysis, so, the principal

components again having 30 principal components.

So, here again you find that though the radar data reduction was equal the data were

reduced to the same extent both using autoencoder as well as principal components, but

the  reconstruction  using  the  encoded  data  using  autoencoder  is  much  better  than

reconstruction from the principal  components though the reduced dimensionality  was

same. So, that tells you what is the power of autoencoder over principal components.

Earlier  we have seen the power of principal components,  now it  shows that the auto

encoders are even more powerful than principal components.

(Refer Slide Time: 29:16)

Similarly,  this  is  another  example  of  reconstruction,  where  we  have  a  set  of  phase

images. So, the top row is your original image, the second row is again output that is the

reconstruction  from  30  dimensional  autoencoder  outputs.  And,  the  bottom  row  is

reconstruction from 30 dimensional principal components. So, here again you find that

the middle row, in the middle row, the data structure of the input data or the input images

has been reconstructed much better than in the bottom row.

So, it also shows that auto encoders with non-linearity or deep on auto encoders within

deep non-linearity are much more powerful than principal components ok. So, let me



stop this today’s lecture here, we will next talk about the training algorithms of auto

encoders. Of course, the training will be back propagation training as we said earlier and

the errors or the loss function for back propagation training, that we will be using will be

the sum of squared error loss. So, we will come back later.

Thank you.


