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Hello, welcome to the NPTEL online certification course on Deep Learning. So, since

our previous class we have started discussion on Auto encoders. So, what we discussed

yesterday or in our previous class is what is an Autoencoder and a particular variant of

auto encoder that we have introduced is what is known as under complete autoencoder.

(Refer Slide Time: 00:45)

Today in this lecture we will discuss about the auto encoder versus principal component

analysis  that  is  whether  principal  components  and the auto encoder  outputs  they are

related,  if  that  related  how  they  are  related  what  is  the  similarity  and  what  is  the

dissimilarity between these two.

And then we saw in subsequent lectures we will discuss about other Autoencoder topics,

like  training  Autoencoders,  Sparse  Autoencoder,  Denoising  Autoencoder,  Contractive

Autoencoder, Convolution Autoencoder and all that.
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So,  before  we  start  today's  topic  on  Autoencoder  versus  PCA,  let  us  just  briefly

recapitulate what we have discussed in our previous class. So, we have said that auto

encoder is an unsupervised learning technique. So, a learning technique which forces the

feed  forward  or  deep  neural  networks  to  learn  what  is  known as  the  representation

learning. That is given an input vector or an input signal the network or auto encoder

learns compressed domain representation or learns a structure which is present in the

input data. 

And the way in the neural network of the auto encoder learns this representation data

representation of data structure is by imposing a bottleneck layer in the network. And this

bottleneck layer actually forces a compressed knowledge representation of the input and

that  is  what  the  auto  encoder  learns  and  this  compressed  domain  knowledge

representation is subsequently used for other applications.
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So, while doing this we assume something, the assumption is the degree of correlation or

the structure that exists in the input data is quite high. And in fact if the input data or the

input  feature  vectors  are  uncorrelated  or  they  are  statistically  independent  then

compression and subsequent reconstruction would be difficult of course, we will be able

to compress.  But in the compression will  be highly lossy compression if  there is  no

redundancy because whatever  information is  present  in the input  data unless there is

redundancy of there is correlation then going for any short of compression leads to a loss

of data.

And once in that compressed domain representation the data or the information is lost

whichever  way  I  try  to  reconstruct  my  signal,  the  original  signal  from  that  lossy

compressed  representation  my  output  will  always  be  lossy.  That  means,  the

decompressed data or reconstructed data cannot be identical to the input. So, the basic

assumption in use of auto encoders, when you go for encoding in compressed domain or

representation  in  compressed  domain  the  basic  assumption  is  the  data  is  highly

correlated.
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So, based on this we have seen a basic auto encoder architecture which is something like

this  that  you have  an  input  layer  you have  an  output  layer. So,  input  layer  actually

accepts the input data.

So, if the dimensionality of the input data is n at the input layer I will have n number of

nodes, in addition there will be one more node to take care of the bias. And in fact we

have seen earlier  that addition of this bias in the input vector allows us to go for an

unified fied representation, that is the bias term can be taken can be considered as an

additional term in the weight vector. 

So, number of nodes in the input layer will be n plus 1, if the input data vector has

dimensionality n. Similarly in the output layer which reconstructs the input as X hat, so

our input is X and the output is X hat. So, the output layer will consist of n number of

nodes, because we want that the input X should be reconstructed at the output.

And in case of a basic model of an auto encoder we have a hidden layer in between input

layer and output layer and what we have said in case of under complete autoencoder that

the number of nodes in the hidden layer is much less is less than the number of nodes in

the input layer or the number of nodes in the output layer. So, this is what he is known as

a bottleneck layer. So, in bottleneck layer as the number of nodes is less than the input

layer  nodes.  So,  what  this  network does is  the network passes the input  information

through a restricted  layer  whether  the  number  of  nodes  is  must  much less  and then



subsequently as this information passes through this restricted layer, then the decoder

side that is the output layer tries to reconstruct the original input from this restricted

output.

So, as the information passes through this restricted layer, the network tries to learn a

compressed domain representation of the data. So, you imagine what will happen if I do

not have this bottleneck layer, that is if the number of nodes in the hidden layer is same

as the number of nodes in the input layer that is the size of the data or even more than the

number of notes in the input layer.

In that case it might be possible that the network will simply learn an identity function,

that is given an input it goes to an intermediate representation and then knows how to

reconstruct the same output. And in the process if I have large number of nodes in the

hidden layer the network eventually may not learn the compressed domain representation

or the structure present in the data which is not our m. So, that is the reason that in the

hidden layer or in the bottom neck layer you put some restriction on the number of nodes

that you can have.

Later on we will see that when we talk about the sparse auto encoder that it is not even

necessary to have the restriction on the number of nodes. But we can add some other

regularization term where the red node activations will be restricted. So, instead of trying

to restrict the number of nodes you try to restrict the node activations.
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So, this  is  the basic structure of an auto encoder  and as we said that  all  subsequent

representations,  we  will  use  this  form  of  representation  diagram  to  represent  an

autoencoder. So, I have an encoder part which is the from input layer to the hidden layer

and I have a decoder part which is from the decoder to the output layer and this whole

thing taken together the encoder decoder together is known as Auto encoder. And as it is

an under complete auto encoder that we are trying to depict the number of nodes in the

hidden layer, which is the bottleneck layer is less than the number of nodes in the input

layer or the number of nodes in the output layer.

And while training this auto encoder the loss function that you try to minimize is the

squared error loss between the input and output. So, that is X minus X hat l 2 norm of

that X minus X hat square take the summation over all the data points all the training

samples that you are feeding for training this network. So, this is the basic structure of an

auto encoder which has got one input layer one output layer with a hidden layer or a

bottleneck layer in between.

(Refer Slide Time: 09:17)

Now, when you go for; so what does this auto encoder try to learn? So, here what has

been shown is that if I feed an input to an autoencoder which is an image. So, in our case

x is an image and the output that is x hat which is reconstructed is also an image right.

And in ideal case if the auto encoder is properly trained then X hat will be same as X.

Now, once this auto encoder is properly trained, what does this encoding layer or the



bottleneck layer actually learn? So, this is an example which has been obtained from

training such an autoencoder with large number of input images.

So, you find that on the right hand side the example image set that we have. So, this

particular image this particular sub image is actually the image or the structure which is

learnt by the first auto encoder. Now, here you find that this output is not exactly from

this particular network that we are showing here, here you find that there are 100 such

sub images or hundred structures. That means, the auto encoder which has been trained

with for this kind of a example has 100 number of nodes in the middle layer or in the

bottleneck layer and every node learns some structure.

So, this first node it learns this structure similarly second node may learn this structure

and so on and how this image has been formed. It is nothing but this weights from the

input which are connected to the first node, you remember the way we have got this

vector is by concatenating the columns of the input image.

So, when you form these structures when I reconstruct the structures which are learnt by

these hidden layer nodes these are these weight vectors which are folded back in the

form of an image ok. So, you find that if there are n number of nodes in the input. So, I

have an image consisting of n number of pixels, here also I have n number of vectors of

course, the n plus 1 considering the bias term. Now, when you form this you remove that

bias term, so among the remaining vectors remaining components of the weight vector I

fold it back in the form of an image.

So, this is such an image so these are the structures as shown in this set of images which

are learnt by this encoding layer and as you see over here these sub images appear to be

edges oriented in various directions. So, edges are nothing but the detailed information’s

which are present in the image. So, this simple example shows that this input layers or

nodes in the input layer actually learn the structures which are present in the image. It

does not simply pass the input image to the output layer and then what this decoder side

does is the decoder side use makes use of these structures which is which are present in

the image and from these structures it tries to reconstruct the original image. 

So, when this network is properly learned this is the form of structure which will which

is actually  learnt  by this  encoding layer  right.  So,  this  is  how an encoder  learns the

structure which is present in the data.
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In case of Deep autoencoders, so earlier what we have shown is a basic structure of an

auto encoder where I have an input layer, I have an output layer and I have one hidden

layer which is a bottleneck layer. In a deep autoencoder I can have a number of such auto

encoding layers which has stacked one after another. So, in this diagram what has been

shown is this is your input layer this is the input layer, this is the auto encoder layer one

so I  put  it  as  AE1 this  is  AE2 or  this  is  actually  the  coding layer  in  this  particular

diagram.

 I can have AE1 AE2 AE3 AE4 and so on I can go on stacking such auto encoder layers

ok. Then accordingly on the decoder side also I will have stacking of a number of such

decoding layers ok. So, in case of deep autoencoder the number of layers number of

encoding  layers  and the  number  of  decoding  layers  that  you  make  part  of  the  auto

encoder that decides, what is the depth of the auto encoder that we are going to design or

the auto encoder that you are going to use.

However for training the auto encoder we still use the squared error loss between the

input and the output for training the auto encoder. So, given this here you find that what

this auto encoder does as we have already said that given an input data of dimension say

N.
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So, X having dimension N if in the encoding layer or in the bottleneck layer I have the

number of nodes which is equal to d, where d is much less than N. So, here this auto

encoder learns a compressed representation of this N dimensional data to a d dimensional

representation,  which is the latent also called as latent space representation. And it is

expected  that  if  the  auto  encoder  is  properly  trained  then  from  this  latent  space

representation that decoder will be able to decode this latent space representation of the

data to give you the reconstructed data X hat, which is almost a replica of your input data

X.

So, in other sense we can say that while coding the auto encoder actually gives you a

transformation  that  transforms the  data  from a  higher  dimensional  space  to  a  lower

dimensional space. And while doing so it ensures that your reconstruction error end to

end reconstruction error when the data will be reconstructed that is minimized.

So, this lower dimensional representation indicates that the loss it tells that the loss that

you incur while compressing the data or while trying to extract from the structure from

the  data  the loss  incurred  will  be  minimum.  So,  in  other  case you can consider  the

function of the auto encoder is to go for dimensionality reduction of the input data. And

if I consider the function of the auto encoder as a dimensionality reduction function, then

we have to see that what is the other dimensionality reduction function that we have and



it is known that traditionally the dimensionality reduction is done by an algorithm known

as principal component analysis.

(Refer Slide Time: 16:57)

So,  naturally  then  the  question  comes  that  how  does  principal  component  analysis

compared with auto encoders? So, in order to do that before going to that comparison for

the benefit of those who does not know what is principal component analysis. Let me

briefly say what is principal component analysis?

(Refer Slide Time: 17:29)



So, in case of principal component analysis our input is let us assume that input is a set

of vectors X. So, I put this as set of vectors X1 X2 X3 up to say X, X N. So, assuming

that we have N number of input vectors and each of the input vector maybe of dimension

say let me put as capital D. So, capital D is the dimension of the input vectors. That

means, each of x one x two up to x n each of them has t number of components.

Now, once I have such a collection of vectors X you define the covariance matrix as C x

which is defined as expectation value of X minus mu X into X minus mu X transpose.

What is mu X? Mu X is nothing but mean of the input vectors. So, I have N number of

input vectors. So, this will be 1 upon N sum of Xi, where i varies from 1 to N. So, this is

my mu X and X is each of these individual vectors. 

So, I define the covariance matrix of the set of input vectors as the expectation value of

X minus mu X into X minus mu X transpose and now if you analyze this covariance

matrix. So, what will be the size of this covariance matrix as the vector is N dimensional.

So, this covariance matrix will be D by D matrix as D is the dimension of the feature

vectors.

So, this covariance matrix will be a D by D matrix and in this covariance matrix the

diagonal elements will give you the variance of the individual components of the vectors.

That means, if I take the first vector, first component of X1, first component of X2, first

component of X3 and so on and I compute the variance of all those first components that

variance  will  be my sigma 1 1 which is  the first  component  in this  diagonal  vector.

Similarly sigma 2 2 will be the variance of the second component sigma d d will be the

variance of the d th component of the last component. And all the off diagonal elements

in this matrix will give you the covariance of different components.

So, sigma 1 2 is the covariance between the first component and the second component,

sigma 4 5 is the covariance between the fourth component and fifth component and so

on, so this is what is your covariance matrix. So, once I have this covariance matrix then

from the covariance  matrix  I  can compute the eigenvalues  and the eigenvectors.  So,

suppose how do you compute the eigenvalues and the eigenvectors given a covariance

matrix Cx?
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Having say sigma 1 1 sigma one two up to sigma one d sigma 2 1 sigma 2 2 up to sigma

2 d and so on. This is sigma d 1 sigma d 2 up to sigma d d. So, this is say my covariance

matrix and I want to compute the eigenvectors i and the eigenvalues lambda.

So, the way you have compute this eigenvalue is from each of these diagonal elements

you subtract lambda and then make determinant. So, the determinant will be sigma 1 1

minus lambda sigma 1 2 up to sigma 1 d sigma 2 1 sigma 2 2 minus lambda sigma 2 3

goes on sigma d 1 sigma d 2 sigma d d minus lambda make a determinant and equate this

to 0.

So, once you put this you will find that this determinant will give you a polynomial of

degree  d  and it  will  be  a  polynomial  in  lambda.  So,  once  I  solve  this  I  will  get  d

components or t values of lambda. So, I will get lambda I, where i varies from 1 to d and

then for each of this lambda i I can compute the corresponding eigenvector. So, the way

you compute eigenvector is if for lambda i the corresponding eigenvector is say e i.

Then the equation that has to be satisfied is C x e i have to be equal to lambda i times e i.

So, I know what is C x I know what is lambda i you solve this equation I get the i th

eigenvector  which  is  e.  So,  this  is  how  given  a  set  of  vectors  I  can  compute  the

covariance  matrix,  from  the  covariance  matrix  I  can  compute  the  eigenvectors  or

eigenvalues  and  for  every  eigenvalue  I  can  compute  the  Eigen  corresponding

eigenvector. 



And you see that if this covariance matrix is a real and symmetric which usually is then

the eigenvectors are orthogonal and what this lambda tells you or the eigenvalue tells

you it simply tells you that what is the scatter or what is the variation of that data in the

direction of the corresponding eigenvector. So, if lambda 1 is very high that in k that

indicates  that  the variation  of  data  in  the  direction  of  the  corresponding eigenvector

which is e 1.

So, lambda one very high indicates that the variation of data in the direction of e 1 is

very  high  right.  So,  given  this  once  I  have  this  eigenvectors  then  I  can  define  a

transformation. So, how do you define this transformation?

(Refer Slide Time: 24:51)

For  defining  a  transformation  you  make  you  form  a  transformation  matrix  A,  this

transformation  matrix  A  is  formed  using  the  eigenvectors  as  the  rows  in  the

transformation matrix. So, the first row in this transformation matrix is e 1 the second

row is e 2 the last row is e d, you remember that we had d number of eigenvectors as our

input vector is of dimension d. 

And how I get this transformation matrix or how I arrange such eigenvectors into rows of

this transformation matrix is in this transformation matrix e 1 corresponding to that my

eigenvector is lambda 1 and for vector e 2 my corresponding eigenvalues the eigenvalue

is lambda 1 and corresponding to this I have my eigenvalue which is lambda 2.



So, I arrange this eigenvectors as rows in this transformation matrix in descending order

of the corresponding eigenvalues. So, here e 1 is the first row e 2 is the second row that

indicates that I have lambda 1 greater than lambda 2 right. So, for two for a pair of

eigenvalues say lambda i lambda j where both i and j varies from 1 to d because I will

have lambda that is from lambda 1 to lambda d.

So, for this pair of eigenvalues lambda i and lambda j, if lambda i is greater than lambda

j that indicates that e i the eigenvector  e i will  occupy a higher row than e j in this

transformation matrix. So, but this e i I have the corresponding eigenvalue lambda i for e

j I have the corresponding value lambda j. So, as lambda i is greater than lambda j in this

transformation matrix a e will e i will occupy a higher position than e j, so that is how

this transformation matrix is formed.

So, once I have this transformation matrix, then I can define a transformation, my input

vectors are x. I can have a transformation which is given by A times say X k the k th

vector  minus  mu  j  mu  X  which  is  the  mean  of  the  vectors.  So,  this  defines  the

transformation. So, this gives me a transform vector which is Y k. So, for k th vector this

transformation gives me a transform vector Y k.

So, if you look at this transformation, what this transformation is doing if I take the first

component of X k. So, difference of first component of X k and first component of mu x

right. This is transformed or the vector X k minus mu k is being projected onto vector e

1, because this is nothing but the dot product of e 1 with X k minus mu X that gives that

gives me the first component of Y k.

Similarly, the dot product of X k minus mu x with e 2 which is the second row in my

transformation  matrix  gives  me  the  second  component  of  Y  k  right.  So,  this

transformation that you get this is what is popularly known as KL transformation and I

can use this KL transformation for data reduction in the sense, that if I want to reduce the

dimension from d 2. What I will do is in this transformation matrix A that I form this a

instead  of  considering  all  the  eigenvectors  I  will  only  consider  e  1  and  e  2  the

eigenvectors e 1 and e 2 and the transformation will be same as this A times X k minus

mu x, where Ais now this is actually 2 by d matrix I have 2 rows and d number of

columns right.



So, this is A 2 by d matrix. So, when you go for this transformation this Y k you find that

it will be a 2 by 1 vector. That means, it is a two dimensional vector. So, just by trunk of

truncation of this transformation matrix I can transform the data from n dimension to two

dimension or d dimension to two dimension. So, that is what gives me a reduction in the

dimensionality  of  the  input  data  and  this  is  what  is  popularly  known  as  KL

transformation and the components of this transform vector Y k that you get that is Y k 1

the first component and Y k 2 that is the second component.

After  this  transformation  these are  what  are  known as principal  components  and the

eigenvectors are the principal directions. So, effectively what you are doing is you are

transforming  your  input  data  into  a  space  which  is  known  as  Eigen  space  and  the

eigenvectors bring orthogonal the Eigen space is also orthogonal. 

And  the  projections  in  the  Eigen  space  in  every  Eigen  direction  are  the  principal

components of the input data and by arranging the transformation matrix A in this form.

That  is  arranging  the  rows  as  Eigenvectors  in  descending  order  of  corresponding

eigenvalues ensures that the error that you encounter by in by truncating some of the

rows from the lower side, ensures that the error that you encounter will be minimum. So,

let me stop here today I will take up this illustrations with principal component in the

next class.

Thank you. 


