
Deep Learning
Prof. Prabir Kumar Biswas

Department of Electronics and Electrical Communication Engineering
Indian Institute of Technology, Kharagpur

Lecture – 28
Autoencoder

Hello,  welcome to the NPTEL online certification course on Deep Learning. Till  our

previous class we have talked about the back propagation learning.

(Refer Slide Time: 00:40)

And, we have seen that how the back propagation learning is actually implemented or

takes place in a feed forward neural network at the network level. And, also how the

gradient  is  back propagated  within a  particular  node,  or different  layers,  or different

circuits within a particular node. And, as we said in the previous class now onwards I

will assume that you know back propagation learning and where it whenever the learning

is discussed I will simply referred that back propagation learning algorithm is used, I will

not go into details of the learning algorithm until and unless some details is essential. 

So, in today’s discussion we are going to start to discuss on Autoencoders. So, today and

subsequent few lectures we will talk about under complete autoencoder, we will try to

find  out  what  is  that  relationship  between  an  autoencoder  and  principle  component

analysis or PCA. Maybe, I will discuss something about PCA for those of you who are



not our of this. We will talk about the other variants of the autoencoder, namely sparse

autoencoder, denoising autoencoder, contractive autoencoder and so on.

And, then we will also talk about convolution autoencoder, but not as a continuation of

this series on autoencoders, but we will come back to convolution autoencoder, after we

discussed about convolution and convolution neural network.

(Refer Slide Time: 02:33)

So,  today  what  we  are  going  to  talk  about  the  autoencoder  and  under  complete

autoencoder. Now, what is this autoencoder? As the name suggests that autoencoder is

nothing, but an algorithm, that codes itself or that encodes itself.

So, you can say that autoencoder is an unsupervised learning algorithm, where the neural

networks  are  subject  to  the  task  of  representation  learning.  And  what  is  this

representation? The representation is nothing, but how you code or how you encode the

input data that is fed to the network. And, learning this representation learning this code

is what is known as a representational learning. 

And,  we  say  autoencoders  are  unsupervised  learning,  because  when  you  train  an

autoencoder for coding an input or for encoding an input. We do not use data’s which are

leveled data’s, unlike in case of classification problems that we have discussed earlier.

So, if you remember what we discussed in case of classification that for training the



network or for training of your classification algorithm, machine learning algorithm, we

need a lot of training data.

And, what that set of training data tells you is that, it tells you that what is the class

belongingness of a particular training data. And, it is only from that information of class

belongingness I can compute the error, because if my machine says that our training data

or if my machine in first that the training data belongs to some category say a 5 whereas,

the ground truth says that that particular training data belongs to category 1. So, there is a

mismatch my machine says it is category 5 whereas, the ground truth is category 1.

So, there is an error and your learning algorithm as we said using back propagation tries

to  minimize  this  error;  that  means,  as  the  machine  has  interpreted  to  E  5  what

modifications  or  what  updations  in  the  weight  vectors  we  have  to  do.  So,  that  the

machine really interprets this data to belong to category 1.

So,  those are  the supervised learning algorithms,  because  the data  that  you used for

training or learning or the labeled data, but in case of autoencoder the data that we use

are not level the data. However, we still have back propagation algorithm, because we

want that whichever way the machine represents or the autoencoder represents the input

data from that representation it is possible, it should be possible that we should be able to

reconstruct the input data.

That  means  I  have to  find out  that  after  encoding whether  the  encoded data  can  be

reconstructed.  So,  if  for  encoding  I  call  it  a  forward  encoding  algorithm.  So,  some

mapping function f that gives me the encoded data, then another mapping function g

should be able to convert or transform that encoded data to my original input.

And for learning what you do is you compare the original input and this reconstructed

input and try to minimize the error between these two. So, this autoencoder as we said

that it is an unsupervised learning and the task of the neural network in this case is to go

for representation learning, or try to encode, or learn how to encode, or how to code the

input  data.  And,  in  order  to  do this  what  you do is  you introduce  bottleneck in  the

network.

Because, as we said that our learning algorithm will be that I have an input, I have some

coding in between then I have a reconstructed output. And, I want that the reconstructed



output should be similar to the input or they should be identical if possible. So, there is a

possibility that the network may eventually learn an identity mapping ok.

So, if the network learns an identity mapping, it does not learn, it does not really learn

the representation. So, in order to enforce or in order to force that the network learns the

representation or network learns what is the inner structure of the data, It is necessary

that in the network you impose a bottleneck layer, we will come to ah bit later details of

all  this  is  done.  And  this  bottleneck  actually  forces  a  compressed  knowledge

representation of the input.

That  means,  if  my input  vector input  data  is  of dimension say d in this  compressed

knowledge representation, it will be mapped to a vector of dimension say M where M is

much less than d. So, how it is done we will come to this a bit later.

(Refer Slide Time: 07:51)

So, for this we have certain assumptions the assumption is there is a high degree of

correlation or structure that exists in the data. If, the components of the input data are not

correlated;  that  means,  if  the  features  are  independent  of  one  another,  then  this

compressed domain representation and subsequent reconstruction of the original input

will be difficult in fact, it may not be possible at all.

So, when the neural network goes for representational learning or tries for representation

of the input data in compressed domain, what it tries to do is it removes the correlation or



the  redundancy  present  in  the  data.  And,  what  is  what  it  preserves  is  only  the

uncorrelated  part.  And,  from  this  uncorrelated  part  then  it  should  be  subsequently

possible to reconstruct the original input data.

So, that is what an autoencoder is and as we said that the name autoencoder in indicates

that it encodes the data or it codes the data on it is own. And, this is an unsupervised

learning, because for training an autoencoder we do not use any label data. What we

want is whatever is fed to the input the autoencoder outputs the same thing.

(Refer Slide Time: 09:20)

So, for this I need 2 different functions; one is the encoding part, one is the decoding

part.  So,  the  encoding  part  will  encode  the  input  data  to  and  compressed  domain

representation knowledge representation. And, the decoder part will decode the data from

that compressed representation from the encoded output to your original input. So, if my

input was X it will reconstruct X hat I want that X and X hat should be similar or the

error between X and X hat should be minimum.

And, that is what is given by the decoder part. So, I should have an encoder half, I should

also have a decoder half. And, this is the structure the base structure of an autoencoder.

So, you find that in this autoencoder, I have an input layer this is the input layer and I

have a hidden layer and I have an output layer.



So, this hidden layer is actually the bottleneck layer. So, in the bottleneck layer what you

are  doing  is  you  are  compressing  the  data,  you  are  going  for  compressed  domain

representation. So, you find that the number of nodes in the hidden layer or the number

of nodes in the bottleneck layer is much less than the number of nodes in the input layer.

And, also you find that the number of nodes in the input layer is same as the number of

nodes in the output layer.

Because,  finally,  at  the  output  I  want  that  whatever  was  the  compressed  domain

representation in the hidden layer from this contest domain representation, it should be

possible to reconstruct my original input. So, original input was X I should be able to

reconstruct this X which is X hat.

So; obviously, the dimensionality of X and the dimensionality of X hat should be same.

So, what does it  mean? Say for example,  I  use this  network for compressed domain

representation of an input image. And, suppose image is of size M by N. So, there are M

into N number of pixels.

So,  as  we  said  before  that  by  column  concatenation  this  M  by  N  matrix  can  be

represented by an one dimensional vector is having M into N number of elements, that

we have to do by column concative concatenation. So, if each of the in each N pixel is

fed to one of the nodes on the input layer. 

So, the number of nodes in the input layer has to be M into N, because every node input

in the input layer gets 1 pixel. In addition we have to have one more node to represent

the bias. So, the number of nodes in the input layer has to be M into N plus 1. Whereas,

on the reconstruction side I do not need any bias, I just want my X back. So, that is what

I need an X hat. So, the number of nodes in the output layer has to be M into N as against

M into N plus 1 on the input side.

Now, suppose I want that this entire image should be represented by a d dimensional

vector or a vector having d number of components, where d is much less than M into N.

So, in that case the number of nodes in the hidden layer has to be equal to d, which is my

bottleneck layer, but the reconstruction purpose I need one more additional node to take

care of the bias. So, the number of nodes in the hidden layer for the decoding side or for

the reconstruction side will be M into N plus 1. So, this is the base architecture of an



autoencoder. Now, we find that so I have an input layer, I have an output layer; I have an

hidden layer, or a bottleneck layer.

(Refer Slide Time: 14:01)

Now, this same architecture, now onwards for simplicity I will represent like this, that

input layer will be an array of nodes, hidden layer will be another array of nodes, where

array of array size in the hidden layer will usually be less than the array size in the input

layer.

Similarly, on the output side also I will have an array of nodes. And, I will have a set of

weights say W 1 and W 1 dash. So, this W 1 connects the input layer to the hidden layer

and W 1 dash connects from the hidden layer to the output layer right. It is also possible,

that instead of having just one hidden layer I can have multiple hidden layers.

Now, before that this side when you are going for input to the hidden layer, the hidden

layer actually gives you the encoded information in a lower dimension in general. Later

on when we talk about sparsity or sparse autoencoder, we will see that it is not necessary

that I will have to go for dimensionality reduction. I can have our dimension explosion as

well or may be of the same dimension, but there your compressed representation is done

by some other mechanism.

However,  for  the  timing  let  us  assume  that  we  are  going  for  compressed  domain

representation,  knowledge  representation.  So,  from input  to  the  reduced  dimensional



representation that is a part which is the encoding part. So, this is the encoder side; so

this is what is your encoder. And, similarly from compressed domain representation to

the reconstruction of the original signal this is what is the decoder part. So, I have an

encoder I also have a decoder. 

(Refer Slide Time: 16:09)

It is also possible that I may not have only one hidden layer or only one bottleneck layer.

I can have multiple number of hidden layers. So, I can have a situation something like

this. So, on the encoder side I have a number of hidden layers on the decoder side also I

will have a number of hidden layers. I will come back to this one a bit later.



(Refer Slide Time: 16:19)

Now, in this case as we said that when I have an autoencoder, what I have is I have input

data and output of the autoencoder is also and data. And, I want that the output should be

a faithful reconstruction of the input. And, while doing so the information passes through

the  bottleneck  layer,  where  in  the  bottle  neck  layer  I  have  a  compressed  domain

representation or coded version of the input data.

Now, I  my expectation from such an autoencoder  is twofold.  Firstly, I  want that the

autoencoder should be sensitive enough to the input for accurate reconstruction, because

what we said is my reconstructed vector X hat should be as close as possible to input X.

So;  that  means,  my  autoencoder  should  be  accurately  should  be  able  to  accurately

reconstruct my input signal. So, that is what is it is sensitive enough to input for accurate

reconstruction. Now, if accurate reconstruction is my M not the representation then an

identity function is sufficient. So, it might be possible that autoencoder simply learns the

identity function.

So,  if  it  simply  learns  the  identity  mapping  it  will  always  reconstruct  your  output

faithfully as the input, but that is not our M; our M is actually what is happening at the

bottle  a bottleneck layer, that is how the input data is represented in the compressed

domain, that is what it is my interest. And this encoded data will be useful for some later

applications, because I have the original if my reconstruction is the is the only M why do



I  need it,  I  have the  original,  why do I  have to  go through the bottleneck and then

reconstruction.

So, the other expectation from an autoencoder is it should be insensitive enough that it

does not memorize or over fit the training data; that means, it does not learn the identity

function.  So, I have 2 conflicting requirements or 2 conflicting expectations  from an

autoencoder, that it should be sensitive and at the same time it should not be sensitive

enough. So, how do you impose or how do you try to satisfy both this requirements both

this conflicting requirements simultaneously?

So, that is actually done by designing your loss function, which takes care of both of

them. And, this  loss function as we said that the loss function will  be used for back

propagation learning algorithm, when you train the autoencoder.

So, the loss function in this case will be given by this that this loss function will have 2

components;  one  is  L  X  X  hat  which  is  the  error  between  the  input  X  and  very

constructed X hat. So, if I want to minimize this; so minimization of this the error takes

care of this,  that  the autoencoder  is  sensitive for faithful  reconstruction  of the input.

Whereas, the second the comment, which conflicts the previous the comment is through

a regularizer term.

So, in the loss function you have an error function between X and X hat and you also

have a regularizer term. So, the regularizer term we will try to make it insensitive to the

input and it will force the autoencoder to learn the low dimensional representation, where

it learns the salient features of the input.

So, that using the salient features that decoder will be able to reconstruct the data. So, it

does  not  simply  learn  the  identity  function.  So,  both  these  requirements  conflicting

requirements are made are satisfied by defining a loss function of this form. So, this is

what I said that the way variant of the autoencoder, which is known as under complete

autoencoder. 

Takes care of the regularization is by introducing or by introducing restriction on the

number of nodes in  the hidden layer  or  the bottleneck layer. So,  as  we said usually

number of nodes in the bottleneck layer or the hidden layer is much less than the number

of nodes in the input layer, or similarly the number of nodes in the output layer.



So, in such cases the network is made insensitive to the input by restricted number of

nodes in the hidden layer. And, when I have an architecture of this form this is what is

known  as  an  under  complete  autoencoder  architecture.  And,  for  training  such  an

autoencoder you simply minimize the loss function, which is given by L X X hat, which

is half of X minus X hat take the L 2 norm of that and some of this over all the training

vectors.

And, you find that here as we said that this is an unsupervised learning because I do not

need to have a knowledge of the class belongingness of the input vector X, what I only

need  is  that  the  X  and  X  hat  should  be  similar  that  is  X  hat  should  be  faithful

reconstruction of my input X. So, this is what is my under complete autoencoder.

Now, as we said before that it is not a necessary that the autoencoder have to have only

one hidden layer or the bottleneck layer, I can have and stacked autoencoder where a

number of hidden layers are stacked one after another. So, this diagram shows that I have

stacked autoencoder where; obviously, X is fed to the input layer. I have the first hidden

layer in the autoencoder on the encoding side, the connection weights between the input

layer  and the first  hidden layer  autoencoder, layer  is  given by the weight  vectors  or

weight matrix W 1. 

Then, I have the second hidden layer and, in this case the second hidden layer happens to

be the bottle neck layer. And, the connection weights between the first auto encoding

layer to the second hidden layer the second auto encoding layer is the set of connection

weights W.

So, this completes my encoding part, then on the decoder side from the encoded data it

goes to the first hidden layer on the decoding side, and the connection weights from this

to this is given by W 2 dash. And, similarly from this hidden layer, to the output layer,

the connection weight is given by W 1 dash.

And, what I simply want is that the X hat should be a faithful reconstruction of X that is

the input data. And, for that the loss function that we have to minimize is the L 2 norm

between X and X hat. And, this has to be summed over all the training data and you

minimize this L 2 norm using back propagation learning algorithm. And, while this is

minimized you find that this weights W 1, W 2, similarly W 2 dash and W 2 W 1 dash



they will be modified, they will be updated until and unless the L 2 norm or the error

between X and X hat is 0 or it is within an acceptable limit.

At that point we say that my autoencoder is properly trained. Now, what you do after the

autoencoder is properly trained? I said earlier that reconstruction is not my M, I want to

reconstruction I want to reconstruct the input data from the encoded data just to ensure

that my encoding is proper, that is whatever my is my encoded data from the encoded

data, I should be able to reconstruct my encoding input data. Which ensures that in the

process of encoding I have not to lost any information,  but this decoding part of the

reconstruction part  is  not the one that  I am interested in.  What I  am interested in is

simply this encoding part my interest is up to this. 

So, for subsequent applications if I want to apply this even for classification purpose

what I can do is after this autoencoder is trained; that means, my encoding part is proper,

I can simply forget about this part of the network. You simply cut it off, your feed your

input, I have the encoded output and feed this encoded output to your other application

modules, this is what is my aim. My aim is not the decoding. Decoding is only a helped

to ensure that my encoder is working properly.

So, this is what the autoencoder will do and for this again we said that what we want is

that autoencoder will be trained using the back propagation learning and for during this

back propagation learning will make use of the errors of the gradient of the error that you

get at the output layer, between the input and the reconstructed output, and based on that

you modify all the connection weights. So, that your encoder is properly trained. So, I

will stop here today we will continue with our discussions on autoencoders in subsequent

lectures.

Thank you.


