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Hello,  welcome to the NPTEL online certification course on Deep Learning.  We are

discussing about the Multilayer Perceptron or feed forward neural network. 
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So, in your previous class we have given an introduction to the multilayer perceptron or

feed  forward  neural  network.  And we have also started  our  discussion on training  a

neural network or the algorithm, which is known as back propagation learning. 

So, in the previous class we have considered a back propagation learning algorithm or

back propagation training procedure, for a single their neural network having only one

neuron that is a function which is having only one output. And while discussing that, we

also have assumed that the neuron does not impose any nonlinearity. That means, given

the training vector X and W, being the weight vector of the neural network the output

simply becomes W transpose X. And because the neural network had only one output;

so, the output could be either positive or negative. 



So, if it is positive then the sample input vector is classified to one class; if it is negative,

it is classified to another class. And we considered the case that the training vectors are

given as pair ordered pair, given in the form X i y i where X i is the training vector and y

i indicates the index to the class to which the X i belongs. And because it was a two class

problem so, we assumed that y i could assume either of value 0 or a value 1.

Whereas, W transpose X when I compute W being the weight vector and X being the

feature vector or the input vector, it is not necessary that W transpose X will always be

either 1 on 0 or 0. In fact, it will be a real number it may be 0; it may be greater than 0, it

may be less than 0. So, a classification rule was that if it is greater than 0 it is belonging

to one class, if it is less than 0 it belongs to another class. 

But coming to the neural network, the output should be either 1 or 0; that means, if W

transpose X is greater than 0; the output should be 1 indicating that it belongs to class the

omega 1. If the output is less than 0, then it should be truncated to 0 indicating that it

belongs to another class. So, that our class index 0 and 1, matches with whatever you get

from the as output of the neuron. And in order to do that we also have seen before that

when we have an implemented an OR function or AND function or XOR function with

the help of neurons. 

That a kind of nonlinearity that we have used; were simple threshold nonlinearity. That

means, if W transpose X is greater than or equal greater than 0; we have put the output to

be 1 in the moment it is less than 0; the output was clamped or truncated at 0; that means,

the threshold value was set at W transpose X equal to 0. So, the moment the output of the

neuron becomes more than 0 it is clamped at 1; if it is less than 0, the output is set to 0.

Now, here you remember that when we talked about the training of the neural network or

updating the weights of the neural network,  our training procedure makes use of the

gradient  descent  procedure.  That  means,  we  have  to  take  the  gradient  of  the  error

function or the gradient of the loss function and the loss functions or the error functions

are computed based on the feature vectors which are misclassified. If the feature vectors,

which are correctly classified for them; I do not have to take any action or I do not have

to correct or update the weight vectors.

But the feature vectors which are misclassified for them with them I have to define a loss

function or have to define an error function. And the weights are updated in such a way



that the loss or the error is minimized. And for that, in gradient descent procedure what

you do is you take the gradient of the loss function or you take the gradient of the weight

function with respect to the weight vector W. And for that if I want to take that gradient it

is  necessary,  that  your  loss  function  or  the  error  function  should  be  differentiable,

because the gradient is nothing, but our differential operator.

Whereas, if I put the output nonlinearity which is also known as the activation function

of the neurons. So, if the activation function of the neurons is a threshold function a

threshold function is not differentiable. Because, I have an abrupt change at W transpose

X equal to 0; hence the threshold function is not differentiable though it is a very very

simple nonlinearity.
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So, instead of using the threshold function a short of nonlinearity, which is used is what

is the sigmoidal function. We have also talked about the sigmoidal function when we

have discussed about the nonlinearity. So, the sigmoidal function is simply given as say I

can represent sigmoidal of some function s; some argument s is equal to 1 over 1 plus e

to the power minus s. 

So, here you find that as s is equal to 0; at s is in our case this s is nothing, but W

transpose X, which is the weighted sum of the feature vector components weighted by

the corresponding weight component ok. So, s is this. So, at s equal to 0; sigma s is equal

to 0.5, which is over here. And as s goes on increasing, say as s tends to infinity; sigma x



sigma s tends to plus 1. And as s tends to minus infinity; sigma s tends to be 0; so, that is

what is given by this particular curve. And at s equal to 0 sigma s is equal to 0.5 ok.

So,  you  find  that  as  s  increases  on  the  positive  side,  the  sigmoidal  function

asymptotically reaches value equal to 1. And as s decreases on the negative side, the

sigmoidal function asymptotically it reaches value equal to 0. The other advantage is this

is a differentiable function and also for when s is sufficiently high to be positive, I can as

consider the output to be equal to 1. And if it is sufficiently low that is on the negative

side, I can consider the output of the neural network or output of the sigmoidal function

to be 0; indicating whether the class is omega 1 or class is omega 2.
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The other advantage that you find that, if I take the derivative of sigma so, I my sigma s

was 1 over 1 plus e to the power minus s. So, if I take the derivative of sigma s with

respect to s this simply becomes sigma s into 1 minus sigma s, which is also a very very

simple form. So, you can take the derivative of this with respect to s and you can verify

that actually this is the derivative that you get. So, these are the other advantages or

many of the advantages of using sigmoidal function as a non-linearity or as an activation

function of the neural network right.

So, given this, so, again I consider a single output, but now this neuron is with a non-

linear activation function and the nonlinearity I consider is a sigmoidal function. 
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So, given this, now how can such a single their neural network can be trained. So, as

before I assume that my training samples are given as ordered pairs X i, y i; X i being the

feature vector and y i is the class level of that feature vector. 

Here, when I feed in this input vector X i to this neural network, I get an output y i hat.

In the previous case without nonlinearity this y i hat was simply W transpose X i. But

now I impose a nonlinearity by the sigmoidal function so, y i hat is now sigma of W

transpose X i right. So, this is my y i hat. Whereas, the class level for this X i is given as

y i; so, as a result I have an error which is given by y i hat minus y i. So, this is the error

if my output y i hat does not agree with the class level y i that is given.

So,  using this  error  I  can define again a  loss function or an error  function  which is

nothing but E is equal to half of y i hat minus y i square. So, you find that now the

procedure that I am following is a stochastic optimization procedure. If I take the sum of

this error over all the samples i equal to 1 to n the kind of optimization procedure that I

will  be  using  is  a  batch  optimization  procedure.  So,  if  I  take  single  vectors,  it  is  a

stochastic optimization procedure.

So, let us now continue with the stochastic optimization. So, my error is given by half of

y i hat minus y i square which is nothing but, half of sigmoidal function of W transpose

X i minus y i square. So, now, if I take the gradient of this error function or this loss

function, the gradient with respect to W; you find that the gradient will be given by this.



You find that in the earlier case, when our y i hat in absence of non-linear absence of

nonlinearity was y i hat minus y i square half of this then the gradient of sorry this is not

y i hat this is.
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When my error was E is equal to half of y i hat minus y i square; then gradient of E with

respect to W was simply, y i hat minus y i times X i this was without nonlinearity. Now,

as we have imposed nonlinearity, which is a sigmoidal function and we have said just

before that for sigmoidal function if you take the gradient, if you take the derivative with

respect to argument it becomes sigmoidal s into 1 minus sigmoidal s.

 So, here just before because of that if I take the gradient of E; gradient of the error

function the gradient of error function becomes y i hat into 1 minus y i hat where this y i

hat is nothing but my sigmoidal which is sigma times W transpose X i. And the other one

terms simply comes from here, this is basically gradient of E with respect to W without

the sigmoidal function or without the nonlinearity.

So, this  is  the gradient  of E or gradient  of the error function,  that  we get when the

sigmoidal nonlinearity is imposed. And once you do that, now my weight updation rule

following the gradient descent procedure simply becomes W gets W minus eta again the

rate of convergence, convergence factored into y i hat into 1 minus y i hat into y i hat

minus y i times X i; this is my weight updation rule. In case I have a single output layer



node or a single layer neuron with only one node and by assuming nonlinearity of the

neural neurons ok.

And here again you can compare that this is a rule, which is similar to same perceptron

algorithm that we considered earlier hence the perceptron network. So, the network that

we are  talking  about  right  now here  is,  what  is  known as  a  single  layer  perceptron

because, I have only one layer in this neural network. And that too I have only one node

in the neural network, to implement a two class problem; if the number of classes are

more than 2; then I have to go for more than 2 neurons, but again that number of layers

will be 1. 
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.

So, let us see such a neural network now. So, now, I will consider a neural network again

a single layer neural network; but, the number of neurons in the output layer is more than

1. That means, we are considering multiple classes multiclass problem where the number

of classes is more than 2. 

So, here as we said before that I will have two layers; one of them there is an input layer

and this input layer does nothing other than simply passing the input to the output. So, if

I take in this i th neuron i th neuron gates x i, which is i th component of the feature

vector X and simply passes this to the output ok. So, the output of this neuron is also X i

that is what this input neurons does; it simply passes the input to the output nothing else

it is just for an interface.



The actual classification is done by this output layer neuron and when I discuss this, I

also assume that this output layer neurons have nonlinearity as activation function and as

we have done before just in the previous problem. The nonlinearity reconsidered in this

case is sigmoidal nonlinearity or a sigmoidal function right. 

So, if I consider an i th neuron, the output of the i th neuron in the input layer is x i which

is i th component of my feature vector X ok. And this x i is fed to the inputs of all the

neurons in the output layer. So, in the output layer, now if I consider a j th neuron so, this

i th neuron in the input layer is connected to the j th neuron to the output layer wide a

connection weight which is W i j. You find that when we introduced, the feed forward

neural  network  in  its  totality  we  had  put  an  index  a  superscript  which  was  k;  two

indicating the layers right. So, superscript k indicates that this is a connection from the i

th layer from the i th node in k minus first layer to the j th node in k th layer.

Now, since we are talking about a single layer neuron neural network; so, I will not use

that superscript k because, it is simply connection from input layer to the output layer

that is known. So, this superscript k I will not use for this purpose. So, let us remove this

superscript k. So, I have this situation that x i, which is the output of the i th node in the

input layer is connected to the j th node in the output layer through a connection weight x

i j.

So, every node in the input layer is connected is feeding input to every node in the output

layer of the j th layer. As a result, the weighted sum of all the inputs collected by the j th

node in the output layer is given by theta j is equal to W i j times x i; where i varies from

1 to D. Assuming D to be the dimensionality of the feature vectors the input feature

vector has got D number of components. 

So, this is the sum of or weighted sum of the inputs or this is nothing but if I represent all

the weights from the input layer to the j th layer by say W j the weights from all the

nodes from the input layer to the j th layer to the j th node in the output layer if those

connection weights are represented by a vector W j; this expression theta j is nothing but

W j transpose X. So, I can also put in this vector form or this is a scalar form, but both of

them are same. 

So, that is the weighted sum of the inputs and then we said that every neuron has a

sigmoidal activation function. So, the output o j that I am getting from the j th neuron is



given by a sigmoidal function of theta j which is nothing but 1 upon 1 plus e to the power

minus theta j right.
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Again we remember that our input vectors are given by X i y i, where y i is the class

node. So, if this input X is said that it belongs to class j; that means, we know that what

is the output of the j th neuron, which should be the output of the j th neuron when this x

is fed to the input of the neural network and that is what we are representing by t j; which

is the expected output or the true class of the input vector X which is preferred to the

neutral network. But o j is the actual value that you are getting from the j th node of the

neural network, when our when you are feeding the same input vector x. So, as a result

you have an error which is o j minus t j. 

So, as before we define the sum of squared error which is nothing but, o j minus p j

square because now output is a vector right for every input X i will have if there are say

m number of classes I have j number of M number of nodes in the output layer every

output layer node will give me some value. 
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So, if this input vector X belongs to j th class on the output of the j th node in the output

layer should be equal to 1; all other outputs should be 0; so, that is what is my target

vector. And using this what is my target vector and what is the actual vector that I get we

define what is this sum of squared errors. 

So,  again  for  telling  this  neural  network  or  for  learning  I  use  the  back propagation

learning algorithm for that what you have to find out is the gradient for using gradient

descent approach. So, if I take the gradient of E which is the loss function or the error

function with respect to W i j which is the weight component connecting the i th note

from the input layer to the j th node in the output layer. So, this gradient del E del W i j I

can compute this using chain rule it is del e del o j, where o j is a function of theta j ok,

because o j is nothing but sigma theta j. 

So, I compute del o j upon del theta j into del theta j again del theta j is a function of W i

j; so, del theta j upon del i j del W i j. And through this chain rule, you find that what i

get as del E del W i j is nothing but o j minus t j o j is the output of the j th node the

actual output of the j th node t j is the target output. So, del E upon del W i j becomes o j

minus t j into o j into 1 minus o j times x i where x i is the i th component of the input

vector or x i is the output of the i th neuron in the input layer. So, this is the gradient that

we will get.



So,  using  the  weight  updation  rule  using  the  gradient  descent  procedure  the  weight

updation rule for the weight component W i j as before will be simply W i j is equal to W

i j minus some constant, the convergence rate eta into o j minus t j into o j into 1 minus o

j times x i ok; this is the weight updation rule. So, if you do it for every i and every j you

are updating every component of the weight vectors which are connecting the outputs of

the input layer nodes to the inputs of the output layer nodes. 

So, once you do this for all i j; so, all the weight components now you have find that we

have two sets all multiple sets of weights right; because for every output node I have an

weight vector. So, since there are M number of nodes here instead of a single vector I

have a matrix.
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So, I can put this matrix as W; where W will have say M number of rows and right, D

number of columns ok. Where every row corresponds to weight vector of a particular

class right. So, later on when we talk about multiple multilayer perceptron with multiple

nodes at the output very often we will use this matrix convention other than single vector

convention. So, this is the weight updation rule or the training procedure for a two layer

network having multiple nodes in the output layer right. So, given this now we can go for

training  of the feed forward neural  network having multiple  number of hidden layer

nodes and also multiple number of output nodes. 
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So, for that the network that we have considered was having this kind of architecture

which also we said before that I have an output layer which I put as k th layer the input

layer over here. So, this is the output layer which is K th layer I am putting it as capital K

there is the input layer and as we said before in the function of the input layer is simply

passed the input vector to its output.

So, which we are representing as j as 0 th layer in between a k th layer represented by

lowercase k and as we said before that we will also assume that from a node i in k plus

first layer to a node j in k th layer I have a connection weight which is given by W i j k.

So, this is the convention that I will use. I will also use the convention that in the k th

layer the number of nodes is given by M k. 

So, M k is the number of nodes in the k th layer. So, while doing this, in the output layer

which is capital K; the number of nodes will be given by M capital K, which is same as

the number of categories or the number of classes we will consider. Now, unlike in the

previous case, here I will have two distinct situations; one is as we said that we can only

compute the error at the output because there only at the output I know what is the target.

I  cannot  compute  error  at  any of  these layers,  I  cannot  compute  error  here I  cannot

compute error here because here I do not know what are the targets. That is the reason

these all these layers are known as hidden layers. And this is the layer where the output is



visible and the output is known for known classes this is a output layer or visible there all

rest of the layers are hidden layers.

So,  we  will  see  that  when  we  talk  about  the  back  propagation  learning  of  such  a

multilayer  perceptron  or  a  feed  forward  neural  network,  then  we  will  have  a  little

difference because now I have a number of hidden layers, which I did not have earlier.

So, error that you compute at the output that can directly propagated to the connections

between the output layer and the hidden layer just before that. So, here computing the

gradient of the error is straightforward. But when we tried to update the weights of the

layers in between hidden layers, then I have to see that how this error actually propagates

to this level and that is where we will have a little bit of mathematics. 

So, we will talk about this training or back propagation learning of the feed forward

neural network in our next class.

Thank you.


