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Hello, welcome to the NPTEL online certification course on Deep Learning, we have

started our discussion on the Neural Network.
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And, in our previous class we have talked about the basic implementation of few of the

logic functions AND, OR and XOR function using the neural networks. Today we will

continue our discussion with the neural network and particularly we will talk about the

feed forward neural network also known as multilayer perceptron. And, then we will see

that how these neural networks can be trained to solve certain problems.

So, for that the algorithm that we will talk about is what is known as back propagation

learning algorithm. And in fact, we will talk about back propagation learning in details,

there is not being that this back propagation learning is the basic of the deep learning or

the deep neural networks, that we are going to discuss in future.



(Refer Slide Time: 01:37)

So, just to recapitulate what we did in the previous class is that we have implemented

three of the logic functions AND function, OR function and XOR function using the

neural network. And, we have seen that in case of an AND function, if the input is X 1

and X 2 for unified representation as we have done before, that we have appended an

additional component which is equal to 1 and, this is what helps in giving a bias to the

neural network or every nodes in the neural network.

And, the weights that we considered was minus 1.5, 1 and 1 and with these we have seen

in the previous class that output becomes X 1 and X 2. And, that is  what our AND

function. In case of an OR function of course, there was a nonlinearity involved in it, the

nonlinearity  that  we have considered was a threshold nonlinearity;  that means,  if  the

output or weighted sum of the input, that is W transpose X, this was greater than or equal

to 0, we have assumed the output to be 1, and if it is less than 0 we have assumed the

output to be 0. And, with that we have seen that this network the simple node implements

AND function.

Similarly, in case of OR function again our input is the binary input X 1 and X 2, the bias

term in this case is minus 0.5, here we have given the weights as 1 and 1 and with this

again we have seen that the output becomes X 1 or X 2. We could implement this AND

function and OR function using a single neural network, because we have seen before

that these functions are actually linear functions. I can separate the outputs which are



once from the outputs which are 0s by a straight line, which has not possible in case of

an XOR gate.

So, XOR is a non-linear function and we have seen in the previous class, that because

XOR is a non-linear function. So, it cannot be implemented a single neural network or a

single neuron. So, I need multi-layer neural network and that is what is in this figure. So,

here again our inputs are 1, X 1 and X 2 those are the binary inputs and one of these two

gates we have seen before that it implements an OR gate and the other one implements a

NAND function.

So, let us assume that the first one implements and OR function and this one implements

a NAND function. So, for implementing OR function just as we have seen over here or

weights will be minus 0.5, 1 and 1 and for implementing a NAND function it has to be

just complement of AND. So, weights for implementing NAND function will be plus 1.5

minus 1 and minus 1 and, these two outputs are finally to be ended. Because, our XOR

function X 1, XOR, X 2 is nothing but X 1 or X 2 anded with X 1 NAND X 2. 

So, here I have to have a AND function so, for this a weights will be minus 1.5, 1 and 1

so, here at the output what I get is X 1, XOR, X 2. So, you find that these are simple

implementations of the logic functions using neural networks.

Now, from particularly this XOR function, it is quite obvious that if the function that we

have to implement or the problem is a non-linear problem, the non-linear problem cannot

be solved using a single NAND network. I need multiple or multilayer neural network

for implementing a non-linear problem. 
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So, for a non-linear problem as we also have seen in the previous class, that I have layers

of neural networks So, I have neural networks in multiple layers. And, from every layer

say layer 1 to layer 2, I have complete connection that is every node in the layer 1 is

connected to every node in the layer 2. And, if the final function so here you will find

that there are K number of layers so, at the output I call the output layer to be Kth layer.

So, the final function that is being implemented is f K ok and, the input layer implements

a function f 1.

So, with my input vector at as X, the first layer that is f 1 layer, it implements function f

1 of X, the second layer implements f 2 of f 1 X, third layer will implement f 3 of f 2 of f

1 X. And, finally, the Kth layer implements f K of the output that has been generated by

all the previous layers.

So, when it is a non-linear problem, we can see that all the layers from f 1 to f K minus

1, they will implement a non-linear mapping. Because, as we said earlier that if I have a

non-linear problem, then instead of trying to design a non-linear classifier, you try to

map the input vectors using a non-linear mapping function. So, that they are mapped into

intermediate  feature  space  and  in  the  intermediate  feature  space,  this  non-linearly

mapped input vectors will be linearly separable. And, then finally, at the final layer or at

the Kth layer I can have a linear classifier to classify all those samples correctly. 



So, all these layers from f 1 to f K they actually implement this non-linear mapping. So,

at the output of f K, the new feature vectors that I gets a feature vectors X, which are

now linearly separable And, the Kth layer I can implement a linear classifier which we

will classify all these vectors h, which are now linearly separable.

So,  this  is  just  a  block  diagram representation  of  a  multilayer  perceptron  or  a  feed

forward neural network. Now, why it is feed forward, because I am inputting the feature

vector X at the input layer, they are being processed at every layer and being forwarded

in the forward direction to the next layer and, finally, you get the output from the final

layer, at the output layer.

And, no where in this path the information is fed back to the previous layer. So, always

the information flows in the forward direction so, it is feed forward network. But we will

see later that for learning or for training this neutral network, the error is propagated in

the backward direction, because our aim is to minimize the error by adjusting the weights

in between the layers.

So, for training this neural network the error is propagated in the backward direction

through each of the layers and while it is being propagated at every layer the weights are

updated in order to minimize the error. So, that is why the learning algorithm is known as

back propagation learning. So, our neural network is a feed forward neural network, but

in the learning algorithm is a back propagation learning algorithm.

Now, let us see in details that this how this neural network or multilayer perceptron that

looks like.
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So,  this  is  what  is  a  somewhat  detailed  representation  of  this  feed  forward  neural

network. So, here I have assumed that there are K number of layers in the network; at the

beginning we have an input layer which is represented as 0th layer. The purpose of this

layer is simply whatever comes at the input is simply passes to the output. So, this layer

does not have any other function, other than simply passing the input to the output. And,

every other layer from 1 2 see K minus 1, each of these layers participate in non-linearly

mapping the input feature vector x to a new feature space h.

And, Kth layer which is represented by capital K, it is the final output layer right. And,

we also assume that  from every  layer  every intermediate  layer  k,  where  this  k  it  is

represented by largest later, the nodes are connected or the neurons are connected to the

next layer which is k plus 1.

And  this  connection  is  complete  in  the  sense,  that  every  node  in  the  Kth  layer  is

connected to every node in the k plus first layer. And, if I take an ith node in the Kth

layer it is connected to jth node in the k plus first layer through so let me put it like this.
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So, I take a node i or a neuron i in the kth layer and I take a neuron j in the k plus first

layer, which is the next layer. So, the output from the node i is connected to the input of

node j output from node i in kth layer is connected to the input of k plus first layer

through a connection weight, which is W ij k plus 1. So, this is the convention that we

will use when we discuss about the back propagation learning.
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So, this is the overall architecture of our feed forward neural network there are K number

of  layers,  Kth  layer  is  the  final  output  layer.  Every  node  or  every  neuron  i  in  an



intermediate layer k represented by lower cost k is connected to the next connected to the

jth node in the k plus first layer through an weight which is given by W i j k plus 1. And,

the  purpose  of  training  this  neural  network  or  learning  is  that  iteratively  using  the

training vectors, you try to find out what should be the value of W ij k plus 1 for every i j

and k. So, that the neural network is finally trained to solve your problem. So, that is the

purpose of back propagation neural network.
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And, in this network you find that as we are feeding the input x i, so for training, the

training data is fed in the form of X i y i as a doublet for say i is equal to 1 to N, where N

is the number of training samples I have, which is given for training this neural network.

So, for every training sample X i as it is labeled because these are used for the training

purpose, I know that to which class this sample X i belongs. So, X i in this case belongs

to class y i. So, if I have a binary classification problem we will do that quickly this y i

can be either 0 or 1. If, y i is 0; that means, the sample X i belongs to say class 1, omega

1 and if y i is 1; that means, the sample X i belongs to class omega 2. So, this tells you

that what is the class belongingness of the training sample that I have.
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If, I have C number of classes, if I have C number of classes, then y i will take 1 of the

values 1 to c. So, this y i in that case is the index to the class to which X i belongs. So, if

I have a data X i 5, this is the training data given, then this means that the training data X

i belongs to class 5.

(Refer Slide Time: 16:08)

Secondly at the output node, if I take a jth node; jth neuron at the output layer I represent

the output of the jth node in the Kth layer as x j K. So, these are the conventions that we

will use, when we talk about back propagation learning. And, here you find that only at



the output given a training vector X i only I know that what should be the corresponding

output. Because, if it is x i 2 this is the training pair that is given I know that when this X

i is fed to the input output of the second node that should be high. The outputs of all

other nodes should be equal to 0 because,  my training pair  says that this vector X i

belongs to class 2. 

Similarly, if attaining vector X is given which belongs to class 9, then when I feed this X

to the input only the output of the 9th node from the output layer should be high and all

other outputs should be low. So, this I can decide only at the output layer. I really do not

know that what should be outputs of any of the hidden layers, that is not visible. So, that

is the reason that all the nodes or all the layers, except the output layer, they are known

as hidden layers. Because, I can only observe I can only decide at the output I cannot

decide  what  should  be the outputs  of  any node in  the intermediate  layers  or  hidden

layers. 

And, this is a layer as we said that this is known as input layer. So, the purpose of every

neuron in the input layer is simply to pass whatever is coming to the input to it is output.

And,  it  is  subsequently  fed  to  the  neurons  of  the  next  layer.  So,  this  is  what  the

architecture of the neural network looks like and the conventions that will follow.
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Now, let us see that how can we train the neural network or what is back propagation

learning.
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So, to talk about back propagation learning first I will consider a very simple neural

network consisting of a single layer which is the output layer. Of course, you remember

that we said before that using a single layer, I can solve only linear problems; I cannot

solve any non-linear problem. And, as I said that this  learning algorithms will  do in

details, because this forms the basis of all subsequent deep learning or deep networks

deep neural networks that we will talk about. So, it is very important that you understand

the back propagation learning very very clearly right.

So, again I take a single network a single neuron, where the weight vector is W, if I feed

an input vector X i. So, as we said before that for training I get the input vectors as pairs

X i y i, where this y i is the class index to which this vector X i belongs. And, as we said

that this is used only for training purpose. During actual testing or when you deploy such

neural networks, I have an unknown vector X i do not know what is the y; if, I know then

I do not have to classify that and that classification will be done by the neural network

only.
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So, here as I have or as I feed such an input vector X i, I expect that the output of the

neural network should be y i and, only when I get the output as y i, which matches with

my true values. Then, at least this X i is correctly classified by this neuron, but what we

get is I get a value X i hat, which is an approximation of X i.

So, if X i hat so this X i hat is nothing, but W transpose X i, where W is my weight

vector and X i is the input vector. And, for the time being I am assuming that I have our

neural network with single layer and single output node and I am not assuming, there is

any nonlinearity in this neuron ok.

So, my output simply becomes W transpose X i and I am assuming that this W transpose

X i is an approximation to y i which is y i hat. So, if y i and y i hat there same; that

means, my input vector is correctly classified. So, I do not have to take any action to

modify the weight vector W. Now, suppose y i hat and y i they are not same they are

different, ok.

So, my error will be y hat minus y i this is the error and what I compute is the sum of

squared error. So, this is sum of y i minus X i where this I will vary from 0 to N so, this

squared error is computed over all the training vectors that I have as I varying from 0 to

capital N and I have capital N number of vectors for training purpose.



And, I scaled it this by half the reason of scaling it by half is as we have seen earlier also

for  any  learning  algorithm  or  any  training  algorithm,  we  go  for  gradient  descent

approach;  that  means,  I  have to  take differentiation  of the error  function or  the loss

function that we have generated.  And, because it  is  squared error or squared loss so

having a factor half will simplify our expressions; so, that is the reason this half is put. If,

I put it in an elaborated form so, this error function of the loss function E is nothing, but

half of W transpose X is this W transpose X i is nothing, but our y hat. So, W transpose

X i minus y i squared take the summation over all I varying from i equal to 1 to N; that

means, you are summing the errors of all the training vectors that you have.

Next as we said that we will employ the gradient descent approach as we have done

before  for  training  the  network or  for  updating  the  weight  vector  W. So,  I  take  the

gradient of E with respect to weight vector W. And, here you find that if this gradient is

nothing, but y hat minus y i into X i where X i is the input training vector, right.

And, now we find that y we have put this half, because otherwise there would have been

a scaling function 2 over here a scaling vector 2 over here so, in order to avoid that you

put half. So, this is the gradient of the error or the loss right. So, I have to update W or

the weight vector in such a way, that this loss is minimized or the error is minimized.

And, for that as before my weight updation rule follows the gradient descent procedure.

So, my weight  updation will  be simply W gates,  if  this  is  the previous value of the

weight vector the updated weight vector will be W minus some eta times the gradient.

What is this eta? We also said before that this is nothing, but a rate of convergence factor.

So, this eta indicates if the value of eta is very high, then the rate of convergence will be

fast, if the value of eta is low, then the rate of convergence will be low. So, I will have a

slower convergence; of course, both has their individual merits and demerits we also

discussed about those before.
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Now, if you look at this weight updation rule, you find that we get something more. I

said my output y should be either 0 or plus 1. So, if it is 0 it belongs to 1 class, if it is

plus  1  it  belongs  to  another  class.  And,  if  you  remember  that  earlier  the  linear

discriminators  that  we have  talked  about,  that  is  a  linear  plane  which  separates  two

different  classes  which  are  linearly  separable.  We have  said  for  one  of  them,  if  W

transpose X is greater than 0, then it belongs to 1 class if it is less than 0 it belongs to 1

another class.

Now, here let us come to a situation that, if I find that W transpose X is greater than 0 for

samples belonging to sum class omega 1, and this is represented by y i is equal to plus 1.

So, as long as my W transpose X i is greater than 0, then it is correctly classified, right.

Now, here you find that if my y i is plus 1, but I get y i hat to be negative, then and

instead of taking the sum let us consider a single feature vector X i. So, which is nothing,

but stochastic optimization we have also talked about that before. If you sum all of them;

that  means,  you are  considering  all  the  training  vectors  together  it  becomes  a  batch

optimization technique.  So, you have talked about batch optimization meaning of the

mini batch optimization and stochastic optimization.

So, if I consider only X i that becomes a stochastic optimization procedure and then our

weight updation rule will be simply W gates W minus eta times y i hat minus y i times X

i. So, here if my y i is actually plus 1; that means, W transpose X should be greater than



0 for correct classification of X i, but suppose W transpose X which is nothing but y i hat

happens to  be negative.  In  that  case  this  y  i  hat  minus y i  this  whole  term will  be

negative. And, in effect what we are doing is we are making W updating W as W plus

some factor say eta times let us put chi times X i.

So, here you find that there is some similarity with the perceptron algorithm that we

talked about towards the beginning of our course. That, if an X i is misclassified we add

a fraction of X i  to the weight vector  for weight vector updation,  right.  In the same

manner, if I assume that y i is 0 for which this y i hat should be negative, because it

belongs to the other class, but if I get y i to be positive y i hat to be positive.
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So, over here my y i is 0; that means, X i belongs to another class, for which y i hat

which is computed by this neuron should be negative, but if I get this as positive ok.

Again as before, the updation that I am doing is W as W minus some eta chi times X i.

So, this is the other vector for which W transpose X i should have been negative, but it

has been misclassified because y i hat has been positive has been computed as positive

by the neuron by the neural network. And, in this case what we are doing is we are

subtracting a fraction of y i from W or in the other words we are adding a fraction of

negated y i  to W, again the same thing that we have done in case of our perceptron

algorithm.



So,  this  is  what  you have  in  case of  single  layer  perceptron  that  following gradient

descent procedure the way we update the weights or the weight vector is by adding or

subtracting a fraction of the misclassified samples to the weight vectors. So, I will stop

this lecture here we will continue with this next.

Thank you.


