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Hello welcome to the NPEL online certification course on Deep Learning. 
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So,  you  have  seen  that  in  previous  lecture  we  have  talked  about  the  optimization

problem,  particularly  optimization  in  machine  learning  and  we  have  discussed  how

optimization in machine learning is different from the general optimization tasks. We

have also talked about the linear and logistic regression. 

So, in case of linear regression we have seen that a variable y, our dependent variable y is

predicted using a linear function of the components of the feature vector y or feature

vector x or we have written y in the form of y hat. The predicted value of y as y hat as w

transpose x where x is the feature vector and w is the weight vector and in case of linear

regression we have said that based on this predicted value of y, you take certain decision

and we have also seen, we have also discussed that this linear regression at w transpose x

gives you an idea of what is the distance of feature vector x from the separating plane,

that is a plane having equation w transpose x equal to 0. 



And  more  the  distance  of  the  feature  vector  x  is  from  the  separating  plane,  more

confident our decision is. That means we know that the feature vector x is well within the

region given to the corresponding class. In case of logistic regression, we have seen that

this distance measure can be interpreted as a probabilistic measure. That means, more

our confidence is that a feature vector x belonging to some class say y the probability of

that class y given x and the parameters w, the parameter vector w should also be high. 

So, as the distance goes on increasing the probability asymptotically reaches to one or in

the other case as the distance goes on reducing in the negative side, the probability of the

other class goes on increasing. So, that some of the probabilities belonging to the two

classes always becomes equal to 1 because the data has to belong to either of the classes;

either class omega 1 or class omega 2. 

So, both this linear regression and the logistic regression we have discussed with respect

to the problems which are two class problems or binary classification problems, then we

have generalized this logistic regression which is a probabilistic measure to a class of

classifier, set of classifiers which are known as soft max classifier. 

So, the soft max classifier is a classifier which deals with multi class problem. So, earlier

we had seen that in case of multi class problem we could have a linear machine or we

could have a multi class support vector machine where the linear machine of this multi

class support vector machine gives you a class score or it outputs a k dimensional vector

or k is the number of classes and the linear machine or the support vector machine till or

multi  class  support  vector  machine  gives  you a  score  for  every  class.  And then  for

whichever  class  the  score  was  maximum,  we  could  classify  the  vector  to  that

corresponding class. 

So, as in case of the logistic regression for a two class problem or a binary problem that

the  distance  measure  is  converted  into  a  probabilistic  measure.  In  case  of  soft  max

classifier, the class score can also be converted to a probabilistic measure. For that what

we have done is given the class score plus cause the class y i to be s y i and class score

for  every  class  j  to  be  s  j.  We have  converted  this  class  score  into  a  probabilistic

measured that p of y i given x w is equal to e to the power s y i upon sum of e to the

power s j where the summation is taken over all j that comes into a denominator and that



is what becomes normalized probabilistic measure and that is what you have done in

case of softmax classifier.

In today’s lecture we are going to discuss about the non-linearity, how considering non-

linearity  is  important  for  machine  learning  techniques  and  then  we  will  extend  our

discussion to neural networks or deep neural networks and here it is very very important

because when we talk about deep learning. The entire deep learning algorithm, entire set

of deep learning algorithms are based on neural network architecture only. So, in some

cases the deep learning is also known as deep neural network algorithms or deep neural

network architectures. 
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 So, first let us talk about non-linearity. So, again I am repeating the same figure that

earlier we had seen that if the classes are linearly separable, I can pass a straight line or a

plane or a hyper plane in multi dimension between the vectors given for two different

classes or in other words that this linear function or the hyper plane can separate support

way can separate the feature vectors belonging to class omega 1 and omega 2 and I can

pass I can have such a hyper plane without any error. 



(Refer Slide Time: 06:46)

But you consider a case says something like this if my feature vectors are obvious form.

So, here all the feature vectors marked as plus say these are the vectors belonging to

belongs to one class. Let us call it class omega 1 and all the vectors which are marked as

minus they are the feature vectors belonging to class omega 2. So, I have the distribution

of the feature vectors belonging to classes omega 1 and classes omega 2 as shown over

here and you can well imagine.

So, this is the case in our two dimension. In three dimension I can have a spherical

distribution of feature vectors belonging to one class and outside the sphere I can have

feature  vectors  belonging  to  another  class  and  I  can  have  many  such  complicated

distribution other feature vectors. So, given this you can well imagine that here it is not

possible to have a linear separator between the classes omega 1 and omega 2, ok. What

whichever state line I form, whichever I take I will always have some misspecification.

So, this is a problem which is linearly non separable problem. I can I cannot separate the

classes using a linear function or this problem cannot be solved using linear function. So,

what we can do in such cases let me just simplify the problem instead of taking vectors

in two dimension. Let us consider that I will take vectors in one dimension or the scalar

features. 
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So, I take a set of features. Let me draw it properly. So, as I said that I have the features

on in one dimension. So, I have a set of samples which are like this that belongs to one

class and I can have another set of samples which I am marking in pink which belong to

a separate class. So, given this you will find that all the samples which are marked in

pink are sandwiched between the samples which are marked in blue. So, given such a

case I cannot draw a straight line or I cannot separate the samples belonging to these two

classes using a single point on say line X.

So, this is the feature direction. I cannot have a single point on this feature line x which

separates the samples belonging to class omega 1 and the samples belonging to class

omega 2. I can of course separate them if I take a curve of this form or in other words, I

have got two points on this feature line using which I can separate these two classes. So,

this becomes a non-linear problem. It is not a linear problem anymore.

So, how to solve this? I can still solve this by having some non-linear mapping of the

feature vectors right. So, what I will do is I will have a non-linear mapping of this feature

vectors in such a way that these feature vectors will be remapped in this direction. So, as

a result the feature vectors, all the feature vectors belonging to class say omega 1 let me

draw a, redraw this figure.

So, all the feature vectors which are marked in pink they will be mapped over here and

all the feature vectors which were marked in blue they will be mapped over here. So, you



find that I had feature features in one dimension now they are mapped in two dimension.

So, the first thing that I am doing is, I am increasing the dimension of the feature vectors

and how I am doing it? I am doing it by using a non-linear mapping. I will come to what

form of non-linear mapping we can do. 

So, I am doing it using non-linear mapping and once I have this, now you find that I can

pass a straight line over here which separates the feature vectors which are pink from the

separate feature vectors which are blue. So, one way we can tackle the problem of non-

linearity that is if the feature vectors are mixed. 

So, that problem can still be solved using a linear classifier, but for that instead of trying

to use a non-linear classifier you apply some non-linear mapping on the feature vectors

and once the feature vectors are non-linearly mapped possibly on a higher dimensional

space in that higher dimensional space, the feature vectors can be classified using a linear

classifier. So, what we will do in that two dimensional example that we have just shown. 
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Let us go to this two dimensional example again. So, the example was like this ok. So,

what I can do here is you find that this is something like a circle at the center and the

feature  vectors  belonging to  class  omega 1 are  within this  circle  and all  the feature

vectors belonging to class omega 2, they are outside the circle. 



So, I can have a non-linear mapping of this feature vectors. So, it is a non-linear mapping

using a non-linear function say phi. How this non-linear function will work? You find

that I have feature vectors in two dimensional space which is given by X 1 and X 2 if I

introduce a third dimension. So, I want to have a value of z where z will be equal to X 1

square plus X 2 square right. So, if I do that then you will find that for any feature vector

which is outside the circle.

So, we are here. The value of X 1 square plus X 2 square will be more than the value of

X 1 square plus X 2 square for any feature vector which is within the circle because for

any point on the circle x square plus 1, X 1 square plus X 2 square is nothing, but square

of that radius of the circle and because all these feature vectors which are negative are

outside the circle for them, the square of the distance will obviously be higher than the

square of that radius of the circle. 

So, for all these feature vectors which are outside the circle X 1 square plus X 2 square

or the value of z will be more than the value of x square plus y square for any feature

vector which is within the circle. So what I will do is, I will now represent all these

feature vectors. So, in the original form the feature vectors are two dimensional having

components X 1 and X 2. Now I will add a third component z which is X 1 square plus X

2 square. 

So, now my feature vectors will be X 1 X 2 and X 1 square plus X 2 square. So, this

becomes the feature vector. So, you find that I have applied a non-linear function which

non-linearly  maps  these  feature  vectors  from  a  two  dimensional  space  to  a  three

dimensional space and when you consider in the third dimension that is in the dimension

of z for all these feature vectors which are within the circle having marked positive for

them,  the  z  value  is  less  than  the  z  value  of  the  feature  vectors  which  are  marked

negative. 

That  means  when  I  consider  in  the  z  dimension,  all  the  feature  vectors  which  are

negative  is  somewhere  over  here  and  all  the  feature  vectors  which  are  positive  is

somewhere over here. So, once I have this, then I can always pass a plane in between

which  is  passing  through  the  feature  vectors  belonging  to  one  class  and the  feature

vectors is belonging to another class. 



So, to by this  non-linear  mapping in the feature vectors  I  am converting on linearly

nonseparable- set of feature vectors to a linearly separable set of feature vectors and we

can say that this is being done by a non-linear mapping phi and this phi is nothing, but a

collection of three functions phi 1 phi 2 and phi 3 where phi 1 and phi 2 phi 1 works on

X 1 X 2. So, I will write at in this way. Let me clear this. 
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So, X is my feature vector which is having two components X 1 and X 2. So, phi of X, I

can write it as phi 1 X phi 2 X and phi 3 X what is phi 1 X phi 1 X gives you X 1 phi 2 X

gives you X 2 and phi 3 X gives you X 1 square plus X 2 square and that is what is the

non-linear mapping that we are going to have. So, you find that now I have converted

this feature vectors from X 1 X 2 plane from two dimension to three dimension where

now the dimensions are given by phi 1 phi 2 and phi 3. So, I can simply write this as the

space. 
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Now I can represent as I am having three dimensions. I can put it like this is phi 1, this is

phi 2 and this is phi 3 and once I have this, you find that the hyper plane in this phi 1 phi

2 phi 3 space can now be written as say W 1 phi 1 plus W 2 phi 2 plus W 3 phi 3 that

equal to 0 right.

And now, if you expand this phi 1 phi 2 and phi 3 what I have phi 1 is nothing, but X 1.

So, this simply gives you W 1 X 1 phi 2 is nothing, but w X 2. So, that gives you W 2 X

2 plus phi 3 is X 1 square plus X 2 square. So, I have W 3 X 1 square plus X 2 square



which is equal to 0 that is the equation of the plane that I have now I find that. I can have

a twelve interpretations of this equation in the sense if I consider this equation where my

variables are X 1 and X 2, the equation is a non-linear equation right whereas, while

training I am given the training vectors. That means, for all those training vectors X 1 X

2 are fixed.

So, I can also consider this equation to be a equation in W 1 W 2 and W 3 where W 1 W

2 and W are the variables, but because the feature vectors given for training are fixed, so

I can also consider X 1 and X 2 to be constants. So, if I consider X 1 and X 2 to be

constants, then this equation is a linear equation. So, if I consider this equation to be a

equation in X 1 X 2, it is the non-linear equation which gives you a non-linear mapping

of the feature vectors.

So, the feature vector X 1 X 2 is non-linearly mapped into phi 1 phi 2 phi 3 domain and

the classifier of the separating plane is a plane where W 1 W 2 W 3 are variables and X 1

and X 2 are fixed. So, by this non-linear mapping you are mapping the feature vectors

into  another  space  and  possibly  a  higher  dimensional  space  and  in  that  higher

dimensional space the feature vectors are linearly separable. 

So, you will come to ah, so this is a very simple example where using a simple mapping

I can convert a non-linearly linearly non-separable set of feature vectors into a linearly

say separable set of feature vectors, however the type of non-linearity may not be so

simple. There can be complicated non-linearities and those are the non-linearities which

have to be solved by the neural networks that we will see later and the neural networks

are to be trained using the training vectors. So, I will come to those problems later. 

So, what are the different types of. So, it is quite clear that when I have a linearly non-

separable problem, I have to have non-linear mapping of the feature vectors from one

space to another space and in most of the cases this mapped space is of higher dimension

than the original space and theoretically it can be proven that if I map feature vectors to

infinite dimensional space, then whatever be the complexity of the non-linearity every

non-linear  problem can  be  solved  as  a  linear  problem when  you  are  increasing  the

dimension to 0 and for such non-linear mapping, I obviously I have to have some non-

linear functions. 



So, now, let us see that what are the different kinds of non-linear functions that can help

us in such a non-linear mapping. So, one of the non-linear function which we will use is

what is known as threshold function. It is a very very simple function. So, the threshold

function says that if y is a function of x, then output y the dependent variable y will have

a value of 1 if x is greater than or equal to 0 and it will have a value of 0 if is x is less

than 0. 

So, here this non-linear function is depicted in this form. So, as x is greater than 0 value

of y is 1. So, here it is 1 if x is less than 0, the value of y is 0. So, here it is 0. So, this is

the simplest kind of non-linearity which is a threshold function that we can have and we

see that use of this sort of non-linearity when we start our discussion on neural network. 
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The next type of non-linearity which we have already discussed is Logistic Regression.

You find that this mapping that we have done from W transpose X to sigma W transpose

X is nothing, but a non-linear function. So, this sigma W transpose X which is 1 over 1

plus e to the power minus W transpose X, this is a non-linear function. So, this function

also helps us to transform a non-linear problem to a linear problem. 
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The other kind of non-linearity which is widely used in case of neural network or modern

deep neural network is what is known as ReLU or Rectified Linear Unit. So, this they

rectified linear unit simply puts as if y is a function of x, then y will get a value of

maximum of 0 or x. So, naturally you find that if x is greater than 0, y gets the value of x

and if x is 0 or less, y will have a value of 0. So, for all positive x y and x are same for 0

and less a value of x is 0 or negative, then y will assume a value of 0. 

So, I can depict this function in this form. So, here you find that as x is greater than 0, y

is equal to x. So, if you take the gradient of this slope of this line, this slope is nothing,

but 45 degree. So, as y is greater than 0 value as x is greater than 0, y becomes equal to

x. If x is less than 0 or 0, then value of y is 0. So, this is a linear rectified unit a rectified

linear unit which is in short it has written as ReLU and obviously you find that it is also

unknown linear mapping.

This also gives a non-linear mapping because if y is equal to x or y is some constant a

times x that is a linear function, but the moment I put y in this form it is a non-linear

function. So, in case of neural networks we will see later that in simpler cases we can use

threshold functions in most of the popular neural networks the non-linearity that is used

as a sigmoidal function, but in modern neural networks in deep neural networks instead

of sigmoidal function people preferred non-linearity. The reason is a threshold function is

a simple short of non-linearity for simple networks.



We can use that, but the problem with the threshold function is it is non-differentiable. I

cannot differentiate into threshold function and we have seen in training earlier that in

most of the cases training uses a gradient descent approach where gradient is nothing, but

our differentiation, right differentiation in multiple directions. 

So,  because  threshold  function  is  cannot  be  differentiated,  it  is  a  non  differentiable

function. So, there it leads to problem in case of training of the neural network because

gradient descent cannot be applied on that. So, that problem is slightly overcome if we

use sigmoidal functions non-linearity. Of course, sigmoidal function is not the only one.

The other kind of non-linearity which people also have tried is what is known as tan

hyperbolic non-linearity where you have variation of the output from minus 1 to plus 1.

In case of sigmoidal function it is 0 to plus 1. 

So, tan hyperbolic kind of non-linearity has also been used, but there again the problem

means when the value of W transpose X is very high or the value of the argument is very

high,  the gradient  is  very very slow right  because your curve is  almost  parallel.  So,

gradient almost vanishes and because of that your training or the learning algorithms

becomes very slow which is solved by This ReLU because in case of ReLU as long as x

is greater than 0, the gradient of the function is unity right. So, here the gradient does not

vanish. 

So, that is an advantage of ReLU you and when you have modern deep neural networks

where you have large number of nodes large number of layers hidden layers, then they

do becomes more advantageous over sigmoidal function. So, today we have discussed

about non-linearity and will continue with these discussions in our next lectures.

Thank you. 


