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Hello, welcome to the NPTEL online certification course on Deep Learning.
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In  the  previous  class,  we  have  talked  about  the  linear  machines  and  we  have  also

discussed started our discussion on multi class support vector machine. Today’s, lecture

we  will  discuss  on  multi  class  support  vector  machine  loss  function  and  also  the

optimization techniques.
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So,  what  we have  done in  case  of  linear  machine  is  that,  we have  seen  that  linear

machine is a function that, transforms or that maps are D dimensional feature vector R D

into a score function of dimension K. So, score function S that you get is also a vector of

dimension K, where K is the number of categories or the number of classes.

So, if I expand this the function looks like this that f given an input vector X I f X i W b

here W is the weight matrix and b is the bias vector is given by W X i plus b, which is

equal to the score function S. And, we have seen that the score function S has got K

number of components where K is the number of classes or the number of categories.
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So, given this we have seen that the score for the j th class or the j th category is the j th

component of the score function S, which in this case we have written as S j and this S j

is nothing, but W X i the j th component of this.

So, we can write this as f X i W the j th component. So, the j th component of this gives

me the score for the j th class of the i th vector X i which belongs to class y i. So, these

are the training vectors. And, because this X i the input vector belongs to class y i. So,

the score function component y i must be maximum. So, when this linear machine gives

you the score function, the score function the y i component of the score function must

be maximum, because we have taken X i belonging to class y i.

And, we are not only satisfied with the score function to be maximum, we also want that

the score function should be more than the score function of other classes by at least a

threshold delta; that means, taken any other class S j our S of y i the score function of the

class y i must be greater than S j, where j is any other category other than y i. So, this

difference must be greater than some threshold delta.

So, accordingly for the i th component the loss function that we get L i, which is nothing,

but maximum of 0 and S j minus S y i plus delta. So, you find that as long as S y i is

greater than S j, then it is greater than S j by an amount delta. So, this amount S j minus

S y i plus delta will be less than 0. Whereas, if S j is equal to S y i then this function will



be equal to delta and if S j is greater than S y i this function will be greater than delta,

where delta use a positive threshold.

So, in that case when you take max of 0 and this output will be this only if it is than 0.

And, the output of this max function will be equal to 0 only when S y i is greater than S j

by at least this threshold amount delta. And, you sum it over all j not equal to i, I get the

last component S i. And, the overall loss that you get is given by sum of all these lost

components.
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So, to explain this we had taken an example, that suppose I have some X i y i write this y

i is equal to 2; that means, this X i belongs to a category 2. And, the suppose the score

function that is computed is given by this S equal to 10 30 minus 20 and 25 and let us

assume that we have a threshold delta which is equal to 10.

So, if i compute L i in this case i is going to 2, because we have taken X i from category

2. So, if i compute L i you find that it will have these 3 components; one is maximum of

0 10 minus 30 plus 10 this then is delta. The first 10 is the score function for category 1

and 30 is the score function for category 2.

So, this is 0 10 minus 30 plus 10 which becomes minus 30. So, the corresponding max

function gives you an output 0. Similarly, for the second case it is max of minus 20,

which is core function for category 3 minus 30, that is core function for category 2 plus



10 again this part  becomes negative so, output is 0. And for the other one the score

function is 25, which is the score function for category 4. So, it is 25 minus 30 plus 10

and that gives you an output 15. So, as a result L 2 is equal to 15.

So, when I compute these core functions as I said before that if I take summation of this

core function of overall value of i for all value of j not equal to y i, I get on the overall

score function.
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So, this is how we compute the score function. And, if you look at the nature of this core

function you find that as long as this component S i S j minus S y i is positive ok. My

score function will be equal to 0 only when this term S j minus S y i, as long as this term

is less than delta my output will be 0. If, it is S y i minus S j this is greater than delta,

then output will be equal to 0, because my classification is correct otherwise the output

will be high.

So, if I plot this score function with respect to S j minus S y i the nature of the score

function or the plot of the loss function will be something like this and this loss function

is what is known as hinge loss.
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So, now we have also talked about a term called regularization, because you find that we

decide about the classification to be correct or not or whether we are satisfied with the

classification output or not, depending upon the difference S j minus S y i. And, which is

nothing,  but  W j  transpose  that  is  W j  is  the j  th  row of  the weight  matrix  W that

transpose X i minus W y i transpose X i.

And, if you find you find that, if I scale up this W by a factor lambda, then the score the

difference S j minus S y i will also be scaled up by the same factor lambda say. For

example, for some W if the difference is j minus S y i is equal to 15 and if I multiply W

scale up W by a factor 2, then the same difference S j minus S y i will be 30.

So, there are many possible values of W for which the value of the difference of S j

minus S y i can be greater than delta right. So, what I need is I need to find out an

optimum W or best value of W, which will satisfy all my requirement.
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So, as a result I have to include a regularization term, which is a function of W or from

the weight matrix. And, this regularization term is usually taken to be a L 2 known. So,

our regularization term L 2 R W becomes lambda times W K L squared, where you take

the summation of W K L square or overall value of K and L. And, as a result our overall

loss function becomes L is equal to sum of L i, that divided by N where N is the number

of training samples we have plus lambda times our W or the overall loss function in the

expanded form is given by this.

So, given this overall loss function, now what we need to do is we need to optimize this

loss function or minimize this loss function.
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And,  in  addition  to  that,  what  we need  to  do  is  we have  to  also  choose  the  hyper

parameters.
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So,  if  you  look  at  the  previous  expression  you  find  that  we  have  got  two  hyper

parameters over here, one of the hyper parameter is delta, which is the threshold that we

have used and other hyper parameter is lambda, which is in the regularization term.

So, if you remember this first term in this loss function we talked to this we defined this

as data loss and the last one is what is known as a regularization loss.



So, you have a to hyperparameters over here, one is the threshold delta and other one is

this lambda. So, I need to choose that what should be the proper values of these two

hyperparameters.
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However, if you look carefully you find that both lambda and delta,  they control the

same trade off. That is if the lambda is more the difference of S j and S y will also be

more, if lambda is less the difference of S j and S y i will also win this. So, accordingly I

will have an effect of lambda. And, due to this we can safely choose the value of lambda

is equal to 1.

So, that is what we have done over here, the value of lambda is taken to be 1. And,

accordingly when you go for minimization of this loss function the value of lambda will

be chosen. So, we have taken value of delta equal to 1 and will do your minimization

accordingly the value of lambda will be chosen.

And, you find that earlier we have talked about from the binary support vector machine

where we have said,  that  given the separating plane between 2 classes omega 1 and

omega 2. During training I will be satisfied only when we find that W transpose X i for

our training vector X i  is  more than a normalized distance 1. So,  accordingly a loss

function for a binary SVM can be defined a like this it is max of 0 minus y i W transpose

X i.



So, you find that as long as this W transpose X i is loss less than 1, that is the normalized

distance from W transpose X equal to 0 that is the separating plane is less than 1 your

loss function will be positive. If, it is greater than 1 then only loss function it is 0. And,

the regularization term in case of 2 plus support vector machine, if you remember we

have put this as half of W square, that was the regularization term in case of that two

class support vector machine.

So, you find that this binary SVM or 2 class support vector machine is nothing, but a

special case of a multi class support vector machine right.

(Refer Slide Time: 15:01)

So, now let us go for how to see, how this loss function, what is the nature of this loss

function?
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So, for illustrating this I consider a 3 class problem and that is the vectors that I consider

is 1 dimensional vector. So, suppose I have got 3 classes given by the weights W 1 W 2

and W 3 and as I said that, I am considering 1 dimensional vectors. So, each of this W 1

W 2 W 3 are scalars ok. And, I also take 3 1-dimensional training points X 1 taken from

class 1, X 2 taken from class 2 and X 3 taken from class 3.
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So, given this situation you find that the loss functions that, we will get is given by L 1 is

equal to max of 0 and W 2 transpose X 1. So, this W 2 transpose X 1 is nothing, but



score of class 2 for this training vector X 1. And, this is the score of class 1 for training

vector X 1. So, the loss function L 1 will be max of 0 W 2 transpose X 1 minus W 1

transpose X 1 plus 1 plus max of 0 and W 3 transpose X 1.

So, this W 3 transpose X 1 is the score of class 3 for training vector X 1 minus W 1

transpose X 1 plus 1. Similarly, we define loss function for plus 2 of L 2 for the support

vector 2 we also define the loss function L 3 for support for the training vector X 3 and

the overall loss is given by one-third of L 1 plus L 2 plus L 3.
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So, given this now, if we try to visualize how this loss function is. So, here you find that

in case of L 1, if W 1 is very small, if this weight vector W 1 is very small, then W 2

transpose X 1 minus W 1 transpose X 1, this term will be positive assuming that W 1

transpose X 1 is less than W 2 transpose X 1. So, output loss function will be positive,

which is max of 0.

And, this and this particular term will be 0 only when W 1 transpose X 1 is more than W

2 transpose X 1 at least by 1 ; that means, as long as W 1 is very small your loss function

given by this value of loss is positive. Similarly, in this case as long as W 1 is less than W

3 here also it will be positive.



However, as W 1 goes on increasing the loss function gradually reduces and ultimately it

becomes 0 and remains 0 for this component L 1. Similarly, for component L 2 you find

that when W 1 is very small compared to this.

So, that this term becomes negative the output will be 0. And, as W 1 goes on increasing

eventually this term becomes positive the output L 1 will also become positive and it will

have a certain value, it is not 0 and same is for L 3. So, by this understanding, having this

understanding now we can try to plot the different loss functions L 1, L 2, and L 3.
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So, if I plot L 1 with W 1 you find that as we said that when W 1 is very small the loss

component L 1 is positive and is it goes on reducing as value of W 1 increases.

Similarly, the other component L 2 initially it remains 0 with respect to W 1, initially it

remains 0 and when W 1 becomes very high in the sense that W 1 X 1 becomes more

than W 2 X 2 by a factor 1 by the threshold 1, then the loss function becomes positive

and it  is  like this.  And, same is  the case with component L 3. And, my overall  loss

function is average of all  these 3 components in 1 L 2 and L 3 and the overall  loss

function is given by this.

So, by looking at this figure on the right which gives you the overall loss function, you

find that the loss function is convex right.



So, this can be solved using convex optimization problems, because the loss function that

will get is convex. Now, here the situation is very simple we can visualize it very easily,

because I am considering W 1 to be a scalar or a 1 dimensional vector.

Now, what happens in case of multiple dimensions usually our weight vectors or the

samples sample vectors they are of very very large dimension may be of the order of

1000s.  So, the visualization  of the loss function in such cases is  very very difficult;

however, we can try to visualize that section wise.
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So, what I do is? Now, I know that my loss function is defined in high dimensional

space. So, I can take a single point in that high dimensional space at random which is say

W and I take a direction W 1 which is also at random. So, this W 1 I take as a direction

passing through the selected point W. And, as we move along the direction of W on you

go  on  recording  the  loss  function,  or  effectively  what  you  do  is  every  point  in  the

direction of W 1 passing to W is represented by this expression W plus a times W 1,

where a indicates that what is the position of the point on the line W 1 passing to W.

And,  we are  taking  the  lost  function  L at  those  different  points  by  varying  a  I  get

different points and you take the loss function W at all those different points.
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So, what I can do is, I can now plot the loss function loss as a function of a or as a varies

I get different points on the line, and now if I record the loss functions, I get a loss

function,  which is of this  form, which is L W plus a W 1 a is the parameter, which

defines which determines the points on line W 1 in the direction of W 1 passing through

W. And, you will find that the loss function which will which will be of this form. I can

also try to define loss function on a plane, if I take the section on a plane. So, in that case

what I have to do is instead of taking just W 1 a single line, I had to take W 1 and W 2 as

2 different lines.
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And, by giving that every point on that plane defined by these 2 directions W 1 and W 2,

now can be determined by this expression W plus a times W 1 plus b times W 2. And,

again if I record the loss value for different values of a and b, which are the parameters in

this particular case I get a loss function which is given in this form. So, this is the plot of

the loss function in 2 dimension.

So, in both the cases whether I take the previous one like this, but you will find that

again the lost function is a convex function, it has a minimum somewhere over here or I

take the next one, that is visualization of the loss function in a plane, you find that here

again the loss function is a convex 1, where the blue that is in this particular case at the

center, here a trace minimum and the red represents maximum loss function. So, I have

the minimum of loss over here.

So, the loss function in 2 dimension, again shows that it is a complex 1. And, this is the

plot that I get if I consider or if I plot the loss function only for a single sample or a

single vector training vector. And, when I aware is this over multiple number of training

vectors the loss function becomes something like this.
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So, you find that this averaging over all the training samples smoothes the nature of the

loss function.
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So, once I have this loss function, next what I need to do is I have to optimize this loss

function or I have to minimize the loss function. So, for minimization as we have done

earlier we take the gradient descent approach. So, I have to take the gradient of the loss

function that I have and a modified W in the direction of the negative gradient.

So, here what I have is as you have already said that the overall loss function is given by

this where this is the data loss component and this is the regularization loss component if

I take. So, I have to optimize this loss function in order to find out the value of W for

which this loss function will be minimum. So, I take the gradient of this loss function

with respect to W y i, I also take the gradient of this loss with respect to W j.

So, when you take the gradient of this loss function with respect to W y i you find that

the expression of the gradient will be that it is sum of X i, that is gradient of loss function

with respect to W y i is nothing, but sum of X i only in those cases where W j transpose

X i minus W y i transpose X i plus delta is greater than 0.

And, because in all the cases so, at W transpose j transpose X i minus W y i transpose X i

plus delta is less than 0, the loss function was 0. So, for those cases those X i S are

correctly classified by or W. So, in such cases I need to not modify the weight matrix W.

So, this gradient only takes the sum of all those X i all those training vector for which W

j transpose X i minus W y i transpose X i plus delta is greater than 0; that means, these



are the that X i leads to an error plus if you take the gradient of this term this gradient

will be actually twice lambda times W y i.

So, in this case it has written with respect to another constant say eta, eta times W y i. In

the same manner, if you take the gradient with respect to W j, then it also becomes sum

of y i where W j transpose X i minus W y i transpose X i plus delta is greater than 0.

So, we will take the sum of only those training vectors for which in this condition is true

we will  not  consider  those training  vectors  for which this  condition  is  not true;  that

means, those training vectors are correctly classified for the kind by the current W. And,

plus from this regularization term when you take the derivative of this regularization

term with respect to W j or take the gradient of this regularization term with respect to W

j, the term that I get is zeta times W j.
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So, these are the gradients and using these gradients we go for our optimization step, or

gradient descent step, where we get the gradient descent as and the k th instant if my

weight vector was W y i k, then the next iterated value of W y i is becomes W y i k plus

1, which is 1 minus eta times W y i K plus 1 over N sum of X i for all those X i, which

satisfies this condition.

Similarly, the iterated value of W j at instant k plus 1 from instant k from the iterative

state k is given by W j k plus 1 is equal to 1 minus zeta times W j k minus 1 over m sum



of all those X i for which this condition is satisfied. So, when we will not consider those

sample vectors, which it does not satisfy this condition, because we assume that those

vectors are correctly classified by the W j at the k th instant ok.

So, if you look at these 2 gradient descent steps you find that what it indicates is first you

are modifying W y i, which was there at the k th instant by the regularization term. So,

this  is  a  component  which  is  coming  from you  are  the  regularization  error  part  or

regularization loss part.  And, this is the component which comes from your data loss

part.

So, that is how iteratively you go on optimizing or minimizing this loss function and

when it converges the value of weight matrix that you get gives you the linear machine

or the support vector machine for multiple classes. So, we will stop here today’s lecture

will come back in the next day.

Thank you.
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