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Welcome, to the NPTEL online certification course on Deep Learning. You just try to

recapitulate what we have done in the previous class.
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In the previous class, we have talked about the linear classifier and, then we had moved

on to the linear machine. In today’s class we will continue with the Linear Machine and

then we will move to what is known as Multiclass Support Vector Machine.

So, as you remember in the previous class that a linear classifier when I extend that to a

multi class problem because linear classifier is usually in case of a two class problem

where we try to find out what is the boundary between the two different class and we try

to design that boundary using the feature vectors or the training vectors given from the

two different classes. When it comes to multi class problem then what we have a linear

machine.
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So,  if  you  remember  from  the  previous  class  a  linear  machine  tries  to  map  a  D

dimensional feature vector say R D to a K-dimensional feature vector which is known as

which is R K. So, this R K is what is known as the score vector that is given a feature

vector X i when the linear machine maps that vector to a K dimensional score vector s

every  component  of  s  tells  us  that  what  is  the  score for  that  particular  category  the

corresponding to the component of s for the given input vector X i. So, the first question

is that how do we get this D-dimensional vector R D.

Let us take a very simple case that we have talked about generation of the feature vectors

in conventional machine learning techniques, where the feature vectors are interrupted

and they can be generated using the properties of the boundary of the object or using the

properties  or  regional  properties  which  contains  the  color  information  texture

information  and  intensity  information  and  all  that,  but  when  we  talk  about  a  deep

learning we do not depend upon the handcrafted feature vectors rather we want that the

machine  will  learn  the  features  as  well  based  on  which  it  will  classify  or  it  will

understand the data.
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So, for specific example when we have image as the input data, so, suppose we have an

image of size say M by N; that means, M number of rows and N number of columns so,

which is a matrix of integer numbers. So, this is say an N M by N image which will have

N number of columns and M number of rows. So, the though way I can convert this into

a feature vector is first you take this column and form a part of the vector, then you

concatenate  the  second  column  that  makes  another  part  of  the  vector  like  this  you

continue the last column forms the last portion of the vector.

So, when I have an image of size M by N having total number of pixels which is M into

N I have a feature vector of a generate a feature vector from this image which has got M

into N number of components. So, this is an M into N dimensional vector.
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Likewise if I have a color image then in color image we have three different planes I

have red plane, I have green plane and I have blue plane each of these color planes. Let

us assume have got M by N number of pixels having M number of rows and N number

of columns. So, from first R component R plane I generate a vector having M into N

number  of  elements.  Concatenate  with  that  the  vector  generated  from  the  green

component having again M into N number of elements and then you concatenate the

similar vectors which are generated from the blue component again having M into N

number of components.

So, the total number of elements in this feature vector now becomes M into N into 3 this

is the total number of elements in this feature vector. So, we were talking about CIFAR-

10 database we have studies in the previous class and in CIFAR-10 database we have

assumed that there are N is equal to say 50,000 images. Each image is of size 32 by 32

pixels and those pink color images there are three planes; red, green and blue for each of

the images.

So, if I convert this into a feature vector of this form every image will be converted into a

column vector having say this is 32 by 32 into 3. So, that is equal to 3072 number of

elements; so, one element corresponding to every pixel. So, when I convert an image into

a vector of this form this vectorization the way I have shown is not the only option

available. What I can do is first I can have one column of component R, so, using this



column I had make a part of the feature vector, then you take one column of green make

another  part  of the feature vector, then you take another  column from B or the blue

component make another part of the feature vector.

And this will continue for every columns taken from red, green and blue components.

So, this can be another way of making converting a colored image into a vector form.
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And, another thing you notice that one I have once I have converted an image into a

vector of this form so, this vector is of dimension M by N by 3 where the images are of

size M by N that the images are color means for CIFAR database this will be having

3072 number of components. So, that means, I am defining a space or 3072 dimensional

space  and  every  image  is  now  represented  by  a  point  or  by  vector  into  that  3072

dimensional  space and this  tells  every image will  be defined by vector or it  will  be

represented by a point into M into N into 3-dimensional space. So, that is what the vector

representation of an image.

So, once I have such a vector representation so, here this is what I was telling that I have

this d dimensional vector which is represented which is generated out of an image and

the linear machine maps this D-dimensional vector into a K-dimensional vector, where K

is the number of categories or the number of classes that we have and if I expand this

expression this expression can be written in this form that f X i, W, b where X i is my

input  vector, W is a  matrix  of  dimension K by D having K number of  rows and D



number of columns and b is a bias vector having again K number of elements. So, this is

a K dimensional bias vector.
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This  W and b they are the parameters  of the linear  machine.  They define  the linear

machine.

So, this functional form f X i, W, b is nothing but W X i plus b where W as I said that it

is a parameter matrix or weight matrix,  and b is the bias vector. So, W and b taken

together and they are parameters of the linear machine and this operation W X i by b

gives me a column vector again of dimension K, where this s a K-dimensional vector is

what is my score function. So, if I put it in an expanded matrix form this is the matrix

expression that I get.

So, here every row of this matrix W represents classifier of a particular class. So, if I take

j th row of this matrix W this represents the classifier of the j th class and this is my input

vector X, there is the bias vector and after computation I get the score function K right.
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So, now let us take an example to see what it actually means. Suppose, I have somehow I

have obtained this which matrix W, this is the vector which is generated out of an image

let us assume that this vector for simplicity is a vector of dimension 4. So, I have got 4

elements in this particular vector and there are 4 number of categories as well in this

particular example. So, my bias vector is again a D-dimensional bias vector. So, this

vector X you are getting from this particular image using the technique that we have just

discussed and after this equation I get this score vector s which is having again 4 number

of elements because I have got four categories.

And, you find that each of this each element of this score vector s gives you the score for

a  particular  class.  Here  the  first  element  let  us  assume that  the  first  category  is  cat

category;  so,  the  first  score corresponds to  a  cat  score.  The second category  is  bird

category in this particular case; so, the second score corresponds to bird. The third score

corresponds to dog and so on and, here as my input vector is generated from a bird so,

you find that the bird score is maximum. It is maximum of all other scores ok.

So, my for my classification purpose whenever an in unknown input vector is presented

to the classifier, the classifier will generate or the linear machine will generate a score

vector and in that score vector whichever component comes out to be maximum I have to

classify that input vector to that corresponding category.
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Now, here  comes  the  interpretation  of  the  rows  of  weight  matrix  W. You  find  that

effectively what I am doing is this matrix calculation is doing is that it is taking the dot

product of the input vector it is taking dot product of the input vector with say j th row

vector of weight matrix W, suppose this is the j th row. So, it is dot taking the dot product

of the input vector with the vector corresponding to the j- th row of the weight matrix or

the parameter matrix and it is generating the j th component of the score vector s.

And, as we said that this being a vector that is my input image represented as a vector or

as a point in D-dimensional space and this j th row of matrix W is also a point in the D-

dimensional space and I am taking the dot product of these two and you know that the

dot product of two vectors tells you what is the degree of similarity between the two

vectors. So, if the two vectors are very similar say if I have one vector in this and another

vector like this, the dot product of these two will be quite high; whereas, if I have one

vector here and another vector here which are widely different that dot product of these

two will be quite low.

So, this j th component of my score vector or s j in other words tells me that what is the

similarity between the input vector which I want to classify and the vector corresponding

to j th row of the weight matrix W. So, having this interpretation of the weight matrix I

can  say  that  every  row  of  the  weight  matrix  is  nothing  but  a  template  of  the



corresponding category. So, the j th row is represents a template of the j th category the

K th row represents a template of the K th category.
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So, if you again coming to the example of CIFAR database we also mentioned in our

previous class that the CIFAR database contains images of 10 different categories like

plane, car, bird, cat, sheep and so on and after training the rows of the weight vector the

rows  of  the  weight  matrix  as  I  said  that  they  represent  the  templates  of  different

categories; so, if I convert those rows into the to the form of images every image will be

a template of the corresponding class of the corresponding category.



(Refer Slide Time: 17:03)

.

So,  how do you convert  this  weight  vector  into an image?  So, it  is  just  the reverse

process that as we have shown in the previous example that the way we convert an image

into a vector is that I have an image. I take every column of this image one by one,

concatenate those columns to get the vectors. So, this is how I form a vector from an

image.

Similarly, if I have a vector how do we convert this into an image. So, if you look at the

way we have done this multiplication that is when we have done W j transpose X plus

say b where this is a dot product of the vector corresponding to j th row of the weight

matrix  with  the  input  vector  X.  What  we  have  done  over  here  is  that  every  p  th

component of W p th component of W is multiplied with p th component of my input

vector X; that means, p th component of my weight vector W of the j th row corresponds

to p th pixel in the vector representation of my input image.

So,  as  I  have  converted  an  image  into  a  vector  by  unfolding  the  columns  and

concatenating them together  to form a vector of dimension D when I do the reverse

process that is given a vector I want to form a matrix out of it. So, first you take the first

M number of elements of this matrix my image was I assumed to be of size M by N. So,

I take first N number of elements of the matrix of this vector and form the first column of

the image; take the second N number of elements of this vector and use that to form

second column of the image.



Similarly, at the end I have M th N number of elements of the vector and use that to form

the last column of the matrix, it should be the other way I have M number of rows. So,

instead of N number of elements I have to take M number of elements. So, here I take

first M components of the of the vector from the first column of the matrix then you take

the second M number of elements of the vector from the second column and in the same

manner you take the N th M number of elements of this vector from the last column.

If I have color images obviously, I will have other color components. So, accordingly I

form other color planes of the input image and, this is how I convert the vector W in the

form of an image. So, this is what we have the way those vectors can be converted into

an image gives me the template. So, you find that these are the templates corresponding

to different classes.
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The next we come to the case of we have a bias vector. It is also possible to include that

bias vector in the weight matrix itself. So, for that what I have to do is, I have to simply

increase the number of columns of the weight matrix by 1 and that additional column of

the last column is actually the vector column vector corresponding to the bias vector and

for doing that the modification that I have to do in my vector data vector is that I have to

add an additional element and make that equal to 1.

So, this gives me the same matrix equation only difference is now I do not have the bias

vector  separately,  but  it  is  included  in  the  weight  matrix  itself  and  accordingly  the



function that I compute is f X i, W where W includes the bias vector v b and you can

verify that f X i, W is same as f X i, W b when the bias vector was kept separate. So, both

these computations are same. So, accordingly the score vector that you get the score

vector will also be same.
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So, what I get is I get for every vector I compute the function as given by the linear

machine and the linear machine gives me a score vector which is s. So, if I take s j or the

j th component of the score vector as is shown over here. So, this s j which is the j th

component of the score vector which is nothing, but when I do this matrix multiplication

WX i and taken the j th component of that which is nothing but the score for j th class for

the i th vector X i and i th vector X i is actually given in the form X i, y i indicating that

this X i belongs to category y i.

You remember that what we are talking about are all training vectors; that means, for the

training vectors we know the category to which the training vector belongs. So, I know

that the training vector X i belongs to category y i and given this to obtain the score for y

i th category for the vector X i have to consider I have to look at what is the y i th

component of the score vector and y i th component of the score vector as before is

nothing but whatever I get by this matrix multiplication and take the y i th component of

that and because we know that this X i belongs to category y i; so, this s y i that is y i th



component of my score vector X must be maximum among all other components of the

score vector because this X i belongs to class y i.

So,  the  next  question  is  should  we be satisfied  just  with  the  condition  that  s  y  i  is

maximum or I want that this s y i should be more than all other components at least by

some margin delta so that I can say with confidence that whatever classification I have

got that is correct. You remember with what we did in case of support vector machine

that in support vector machine your W transpose X plus some bias b we assumed that

this have to be greater than some minimum threshold d.

And, what is this W transpose X plus b; this tells you that an idea of what is the distance

of X vector X from the plane W transpose X plus b equal to 0 and with normalization

this we can always write in the form W transpose X plus b have to be greater than or

equal  to  1  after  normalization  we  can  always  do  that.  So,  this  says  that  from this

boundary  W transpose  X plus  b  equal  to  0,  the  normalized  distance  of  my training

vectors must be greater than or equal to 1 and that is the margin.

Similarly, in this case to have confidence over the result that we get the classification

result that we get I should have I should impose that the score for class omega i must be

greater than score for any other class j at least by margin delta and accordingly I can

define a loss function L i which is given by 0 maximum of 0 or s j minus s y i plus delta

and this should be I have to take sum of this for all j which is not equal to y i. So, here

you find that what I get is if s j minus y i this particular value equal to 0, then delta which

is a positive constant is greater than 0 so, output will be 0.

Whereas, if s j minus y i this is minus delta; that means, y i minus s j is equal to plus

delta then s j minus y i plus delta will be equal to 0, if you take the max function the

output here also be 0 and it will remain 0 as long as s y i minus s j is greater than delta

that is s j minus y i is less than minus delta. So, for all those cases this max function will

be giving an output 0 and the loss component the contribution to this loss function L i in

that case will also be equal to 0 and L i will be positive as long as the margin is less than

delta.

So, this particular loss function confirms ensures that score for category omega I will

always be greater than the score for any other category s j at least by a margin delta right.
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So, if I this is an example that suppose I have taken an y i which belongs to class II and

the score function is given by 10, 30 minus 20 minus 20, 25 and if you compute the loss

function then you find that for the first one the loss function will be equal to 0, because

30 is greater than 10 by a factor by a margin which we had in this case we have assumed

to be 10 by it is; 30 is greater than 10 by a margin which is more than 10.

Coming to this one again 30 is more than minus 20 which is score for the third category

by more than 10 come to the third category fourth category for which the score is 25 now

we find that the margin for category 2 to which my input vector belongs so, this margin

from category 2 the difference between the score for category 2 and category 4 is only 5

which is not sufficient because I have assumed margin to be 10.

So, this fourth component that actually gives me a nonzero loss function over here and

that nonzero loss function is equal to 15; whereas, the others gives me a loss value which

is equal to 0, that gives me the overall loss function a L i which is equal to 15 ok.
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And, if you plot this loss function I plot this loss function which is max of 0 s j minus s y

i plus delta versus s j minus s y i, you find that as long as s j minus s y i sorry it should be

just negative of this s y i minus s j if I take the negative value of this; that means, s y i

minus s j as long as it is greater than delta then your loss function is 0. The moment it

becomes less than delta loss function goes on increasing which is in this direction.

And, because of nature of this variation of loss function this is what is known as hinge

loss. So, in case of linear machine which minimizes hinge loss, you find that we are

talking about a margin so, the score between the correct class and in incorrect class the

difference of these scores must be greater than margin delta which is similar to the two

class of vector machine that we discussed earlier this is what is known as multi class

support vector machine. So, in case of multiple class support vector machine it tries to

minimize the hinge loss as shown in this case.
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Now, this hinge loss is not sufficient. The reason being, if I multiply my weight matrix W

by a constant say lambda which is greater than one you find that the difference between s

j and s y i is nothing but if I take the difference of the dot products of the j th row of

weight matrix W and y i th row of j th matrix w. So, s j minus s y i is nothing, but the

difference of these two dot products.

So, accordingly if I scale of W by lambda these differences is also going to be scaled up.

So, if for some W my s j minus s y i was say 15, now if I scale of W by 2 then this s j

minus s y i will be 30. So, for different values of W I will have different differences of

the score function. So, I have to choose that which value has to be proper among all these

different possibilities of W, I have to choose a proper W; that means, I have to have

impose a condition on W itself and that is what is known as regularization.
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So,  when  you  go  for  regularization  you  include  a  regularization  term  in  your  loss

function. So, this regularization term is what is R W and usually the regularization term

which is included is the L 2 norm of this weight matrix. So, accordingly you modify your

cost function as L is equal to this was the function corresponding to your hinge loss and

you find that the hinge loss depends upon the data along with your parameters of the

linear machine.

So,  this  is  a  component  which  is  called  data  loss  and  I  also  impose  a  condition  a

regularization term which is L 2 norm of my weight matrix which is delta W delta times

sum of W kl; W kl is the kl th element of the weight matrix squared take the sum of this

over l and k and this is what is known as a regularization loss.

So, now overall loss function includes two terms; one is the data loss and other one is the

regularization loss. So, while designing this multi class support vector machine I have to

optimize or we have to minimize this overall loss function. So, with this I will stop today.

Thank you.


