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Hello, welcome to the NPTEL online certification course on Deep Learning.
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In our previous lecture, we had talked about linear discriminator and we had also talked

about the perceptron algorithm in which our linear using which a linear discriminator can

be designed. Today we are going to discuss about the Support Vector Machine and if you

remember that the classes that we have considered in the previous day are actually 2

classes. So, we wanted to have a linear discriminator which discriminates the vectors

belonging to two different classes. And, when you talk about support vector machine we

will  continue  with  2  classes  initially,  but  later  on  we  will  move  to  multi  class

classification problems.

So, before we go for support vector machine I will just quickly recapitulate what we

have done in the previous class in the linear discriminator.
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So, we what we had done in the previous class is we have taken 2 sets of feature vectors

so, this is of set of each a vector which belong to class omega 1 and we have taken

another class another set of feature vectors from class omega 2. And, then what we tried

to see is we assumed that these 2 classes these 2 states of feature vectors are linearly

separable and assuming linear separability, we have tried to find out a linear boundary or

a hyperplane which separates these 2 classes of feature vectors. So, find that an equation

of such a linear boundary will be given by this a transpose X plus b equal to 0, where

you find that this vector a is a vector which is orthogonal or normal to the separating

plane.

So, the vector a will be like this so, this will be the direction of vector a and as we have

assumed the  existence  of  a  separating  boundary which  is  linear;  we know from our

school level mathematics that such a linear boundary divides the feature space into two

half spaces. One of the half space is positive half space, the other half space is negative

half space. So, for any feature vector X which belongs to positive half space I must have

a transpose a X plus b which is greater than 0 and for every feature vector lying on this

planes. 

So, if I take a feature vector lying on this plane for this feature vector a transpose X plus

b will be equal to 0. So, as we have taken a number of feature vectors from the 2 classes

omega 1 and omega 2, if I take any vector X from the class omega 1. So, this is the set of



vectors belonging to class omega 1 and this surface this being the linear boundary having

equation a transpose X plus b equal to 0 for every X belonging to class omega 1 which

are my training vectors this condition must be satisfied that a transpose X plus b have to

be greater than 0.

In the same manner, if I take a feature vector X from class omega 2 where this feature

vector X falls on the negative side of the linear boundary this condition that a transpose

X plus b less than 0 must be satisfied. So, for this surface for this linear boundary which

satisfies  this  equation  a  transpose  b equal  to  0 as  we have said that  the  vector  a  is

orthogonal to the surface. So, if I modify vector a; that means, the orientation of this

linear boundary will change and the value of b which is nothing, but a bias it decides the

position of this separating plane in the feature space. So, a gives you the orientation and

b gives you the position.
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Now, given this I can also represent this equation a transpose b a transpose X plus b

equal to 0 in an unified form a transpose X equal to 0. And, for writing this equation a

transpose X plus b equal to 0 in the form a transpose X equal to 0 I have to do certain

modifications. So, what are those modifications? I have to modify a like this, that now

this modified a contains all the previous components a 1 to a d of my initial  feature

vector the initial solution vector a. And, this bias term b is also now included in the same



vector a in this modified vector a. And, in order to do this the feature vector X has to be

modified as all the components of X that is X 1 2 X d are remaining as it is.

Now, what I have to do is I have to append an additional component to X which becomes

1. So, with this modification your a transpose X plus b equal to 0 now gets modified to a

transpose X equal to 0. So, that my bias term b is included in the solution vector a. So,

you find that the implication of this equation is now this separating plane always passes

through the origin in my d plus 1 dimensional space. In the earlier case depending upon

the value of b the separating plane might have been anywhere within my feature space.

But, in this modified form as I am increasing the dimension of the feature vector by 1 in

this modified feature space the separating plane always passes to the origin.

So, given this my situation will now be of this form, the classification will rule now will

remain that for every X sorry this should be X, for every X belonging to class omega 1 I

must have a transpose X greater than 0 so, this Y have to be X right. For every feature

vector X in this modified form taken from plus omega 1, I must have a transpose X

greater than 0 and if it is taken from class omega 2 I must have a transpose X less than 0.

So, for correct classification the classification rule remains the same and I can do another

modification that is.
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So,  what  does  it  mean  is  this  that  coming  over  here  you  find  that  as  one  of  the

components of the feature vector X I have made equal to 1. So, in the modified form the



feature vectors will appear like this. So, if this is the X 1 component and this is the X 2

component, X 2 component has been made equal to 1. So, this will be the arrangement of

which are vectors in this case and a being the orthogonal to my separating plane, these

vectors which belong to class omega 1 appear in the positive half space of the of the

separating  plane.  And,  these  vectors  which  belong  to  class  omega  2  appear  in  the

negative half space in my feature space.
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I grew another modification that is all the feature vectors which come from class omega

2 I negate them ; that means, a feature vector X if it is taken from class omega 2 I make

it  minus X. What is the advantage? By negating all  the feature vectors coming from

omega 2 negative and negating them my classification rule becomes same irrespective of

whether X is taken from class omega 1 or X is taken from class omega 2. Because, in

every case my classification rule becomes a suppose X greater than 0.

And, if I find that given a solution vector a for any X irrespective of whether this X

belongs to class omega 1 or X belongs to class omega 2, if I find that for any such a X a

transpose X is less than 0 immediately I can say that this solution vector a misclassifies

the corresponding X. And, whenever there is a misclassification I must try to update a

such that the modified a or update a will correctly classify X; let us see how we can do it.

So, my situation is something like this now, that in the previous case you find that all



these  feature  vectors  belonging  to  omega  2;  they  were  on  the  negative  side  of  the

separating plane.

Now, after negation that negated feature vectors belonging to class omega 2 now comes

over here. And, you find that after negation all the feature vectors, the negated feature

vectors belonging to class omega 2 and also the original vector feature vectors belonging

to class omega 1, all of them fall on the positive side of the separating plane. Now, you

find that I can observe one more thing that is what is the limit of this separating plane or

what is the limit of the solution vector a. So, you find that if I rotate the separating plane

in the anti clockwise direction then the limit to which I can rotate this is given by this.
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Because,  if  I  rotate  it  further  in  the anti  clockwise direction  then this  feature  vector

belonging to class omega 1 is going to be misclassified. In the same manner if I rotate it

in the clockwise direction then this is the limit  that I can have because, if I rotate it

further in the clockwise direction then this feature vector belong to class omega 2 that is

going to be misclassified. So, these two this one this position and this position gives me a

limit of the separating plane.

And, as I have limit on the separating plane, in the same manner I can have limits on the

corresponding solution  vectors.  So,  you find  that  as  this  position  is  the  limit  of  the

separating  plane,  the  corresponding  limit  on  the  solution  vector  is  this  which  is

orthogonal  to  the  separating  plane.  Similarly,  here  the  corresponding  limit  on  the



orthogonal or the solution vector is this. So, it clearly says that I must have an aid which

correctly  classifies  all  the  training  vectors  must  be  within  this  region  which  is  my

solution region. So, the approach for designing a linear classifier should be such that I

must get a solution vector lying within this solution region.
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So, in order to do this what we can do is for every X which is misclassified as I know

that for every X which is misclassified by a, I should have this condition that a transpose

X less than 0. You remember that all this X is that we are talking about, all these feature

vectors X that we are talking about these are all training vectors; that means, for all the

vectors I know to which class they belong. So, as we have said so, far that given any a if

I find that a transpose X becomes less than 0; that means, that a misclassifies that X and

this misclassification leads to an error.

So, I can have an error measured for this misclassified sample which I will put as minus

a transpose X. So, as a transpose X is less than 0 so, minus a transpose X is positive; that

means, if I have a misclassified sample that leads to a positive error. So, whenever a

correctly classifies all the samples then this error will be equal to 0. So, what I do is for

given a you identify all the feature vectors which are misclassified; that means, all the

feature vectors for which a transpose X becomes negative. And, then you define an error

function which is called the perceptron criteria function.



So, I write this as J P a which is a function of now the solution vector a which is as sum

of  minus  a  transpose  X  and  this  summation  has  to  be  taken  over  all  X  which  are

misclassified.  And,  once  I  have  this  error  measured  then  I  can  modify  a  following

gradient descent algorithm, we will discuss more about gradient descent algorithm later.

So, this gradient descent algorithm says that I have to shift a in that direction of the

negative gradient.

So, for updation of a; I have this updation rule that a gets a minus gradient of J P a and

this gradient is scaled by a scale factor eta which is known as rate of convergence. So,

this  will  be  my  weight  updation  rule  using  gradient  descent  procedure.  So,  in  this

particular case where, I have this perceptron criteria function J P a given by minus a

transpose X for  some of  that  for  all  X which  are  misclassified.  So,  using this  error

function the gradient descent procedure now becomes.
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If you take the gradient of J P a, the gradient of J P a becomes minus sum of X for all X

which are misclassified. And, accordingly my training or learning algorithm will be like

this that initially you choose weight vector a 0 at random and then I will go on updating

this weight vector a iteratively. So, in any case iteration if a k is the weight vector using

this a k you try to identify all the feature vector X which are misclassified.

And, once you identify all such which are vectors which are misclassified then for the

next iteration or the next updated weight vector  a k plus 1 I  can get it  from a k by



modifying a  k as a  k  plus 1 gets a  k  plus eta  times sum of  X for  all  X which are

misclassified. So, this is my weight updation rule, let us say with diagram what does it

mean.
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So, as we have seen before that given these two sets of vectors belonging to class omega

1 and omega 2,  I  have  the region solution  region which  is  this  so;  that  means,  any

solution vector must lie within this region. So, what I do is initially let us assume that we

have a separating plane which is given as this. And, here you find that this separating

plane misclassifies these two samples which belong to class omega 1 and the weight

vector a is this which is; obviously, outside the solution region. So, I have to update this

vector a by adding to it, the sum of these two misclassified vectors and when you add the

sum of these two misclassified vectors is obviously, in this direction.

So, a has to be moved in this direction and if I have sufficient eta, eta is proper then

possibly we will stop within the solution region and I get the solution. But, if eta is large

then we will cross the solution region and will move somewhere over here. So, here in

this case after adding modifying this a using some of these two misclassified samples

suppose the next separating plane comes out to be this.
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 And, again this separating plane as you see misclassifies  these two samples and the

corresponding solution vector a 1 is over here. So, again to a 1 you add some add some

of these two vectors and some of these two vectors is in this direction. So, a 1 has to be

moved in this direction. So, at the next level my separating plane will be somewhere like

this  by updating a 1. And, now you find that I have a vector which falls within this

solution region and this is my a 2.

And, as it falls within the solution region at and it correctly classifies all the samples

whether it belongs to class omega 1 or belongs to class omega 2; so, I am satisfied with

this solution vector. So, this is the approach for designing a linear classifier, now as we

have seen that as the solution region is this. So, any vector within this region should

satisfy my purpose, but if the solution vector comes very close to this solution boundary

possibly that is not a good solution because, it is prone to error. So, I would like to have a

vector which is well within this solution region so, that the classification my classifier

becomes very very robust. So, let us see how we can do it.
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So, what I mean by this is say given all these different feature vectors coming from two

different classes and earlier as we said earlier that my solution classification rule is a

transpose a X plus b be greater than 0, if X belongs to class omega 1. And, a transpose X

plus b is less than 0 if X belongs to class omega 2 and this is one such separating plane

which satisfies this criteria, but is it unique obviously, not let us see.
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So, this is one such separating plane that we have seen which satisfies this region, I can

have another separating plane which is given by this blue line, that also satisfies this



criteria. This is the separating plane which also satisfies this criteria; this is the separating

plane which also satisfies this criteria. So, I have infinite number of such possibilities.

So, I have to identify that out of all these different possibilities which one is should be

the preferred solution and that is where the support vector machine comes into picture.
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So, to illustrate this let us take a very simple case. So, the case is like this I assume that

these are the vectors which belong to class omega 1 and these are 2 vectors which belong

to class omega 2. And, I have a separating plane which separates in these 2 classes and

now as I have shown previously that for any X belonging to class omega 1, my correct

classification criteria is a transpose X plus b greater than 0. And, for X belonging to class

omega 2 I had a transpose X plus b less than 0.

Now, I can take another strategy; let us assume that every training vector is given as a

pair ; that means, along with the training vector we also have its class level right. So, I

can put it this way that training vector X i is given as a pair X i Y i where, this y i

indicates that what is the class or to which class X i belongs. So, I will put y i as plus 1 if

X i belongs to omega 1 and y i will be is equal to minus 1 if X i belongs to omega 2.
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So, if I assume this then you find that both of these conditions that a transpose X i plus b

greater than 0 for X i taken from class omega 1 and a transpose X i plus b less than 0 for

X i taken from class omega 2 both of them can be written in a single form that is y i

times a transpose X i plus b, it has to be greater than 0. So, this becomes my unified

representation  and  if  you  compare  this  with  what  we  discussed  previously,  that  we

negated all X and had an unified representation all X taken from class omega 2. And, had

an unified representation or unified classification rule of a transpose X greater than 0 for

correct classification which is exactly same as this.

It is just another way of representation that you multiply by y i a transpose X i plus b

where, y i is plus 1 if X is taken from class omega 1 and y i is minus 1 if X i is taken

from class  omega  2.  And,  by  doing  that  I  get  an  uniform classification  role  that  y

transpose y i into a transpose X plus b will be greater than 0; whenever X i is correctly

classified by this vector a and the offset of the bias term b ok. So, now as we have seen

previously that I can have different options of the separating plane and what I have to do

is I have to choose out of all those options which is the correct option.
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So, if I take this particular separating plane then you find that my margin is given by this

you. Remember one more thing that when I take a transpose X plus b for any feature

vector X, this is an indication of what is the distance of the feature vector X from the

separating plane a transpose X plus b equal to 0. So, given over given in this equation, if

this is my separating plane my confidence of correctly classifying a feature vector X

which is lying over here is more than my confidence of correctly classifying a feature

vector over here or directly classifying a feature vector over here.

And, what is this a transpose X plus b? a transpose X plus b as I said it is the distance of

vector X from the separating plane a transpose X plus b equal to 0. Or, in other words a

transpose X plus b upon mod of a this is the distance of X from the separating plane. So,

more the distance more is my confidence that I have correctly classified this sample X.

Now, going like this if I take in the feature the separating plane to be this I find that my

margin  is  classification  is  given  by  this  much;  that  means,  this  feature  vector  the

confidence  level  of  this  feature  vector  being  classified  correctly  is  this.  And,  the

confidence level of this feature vector pink correctly classified as given by this.
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On the other hand if I take some other orientation of the separating plane said this; now

the margin or my confidence level in classification is this much. Let us take another say

this one the margin is this. So, you find that for every orientation of the separating plane

I have different margins. So, if my classifier is proper or the separating plane is proper or

it is robust then I must take that particular separating plane which tries to maximize the

margin.

Or, in other words the separating plane which I use for classification of our classification

of the feature vector belonging to two different classes, this separating plane must be at a

maximum distance from all the feature vectors belonging to belonging to two different

classes. That is this separating plane the distance of this separating plane from the feature

vectors belonging to class omega 1 and the distance of the separating plane from the

feature vectors belonging to class omega 2 from both sides this should be maximized.

So, this is just the introduction of support vector machine and the machine which gives

such a separating plane is nothing, but a support vector machine. So, we stop the today’s

lecture over here and in the next lecture, we will come across that what should be my

strategy for designing such a support vector machine.

Thank you. 


