
Operating System Fundamentals
Prof. Santanu Chattopadhyay

Department of Electronics and Electrical Communication Engineering
Indian Institute of Technology, Kharagpur

Lecture - 60

File System and Secondary Storage (Contd.)

(Refer Slide Time: 00:31)

So, operation that we can do on a directory is the most frequent operation is the search

operation; we are searching for a file in a directory so, that is one operation. We create a

file so, when we create a file then the entry has to be made in the directory that this file

has been created. Similarly, we can we may want to delete a file so, when a file is

deleted; the directory entry has to be deleted. We may want to get a listing of the

directory so that shows all the files and directories that are there within this directory.

Sometimes we want to rename a file so if we rename the file then the directory entry will

change and also you want to traverse the file system so it may be recursively if going

through all the sub directories that we have within a directory and that way. So these are

the operations that are performed on the directory.

(Refer Slide Time: 01:11)

So, how to organize this directory structure? So, directory is organized logically to obtain

efficiency because, we have to locate the file quickly, naming so that it is convenient to

the users. So, two users can have same name for different files ok. So, that way they

should is if they are on the same directory then that will create confusion. If they are on

two different directories then we can conveniently locate them and separate them.

The same file can have several different names definitely so, from different users, it may

be that they mean the same file, but they give different names to the files so that should

also be possible. So, we have to have both way like two files given the same name and

same file given two different names so both are to be supported. Then grouping so, it is

the logical grouping of files by properties. For example, all types of all Java programs,

all games so they maybe we may like to group them into some format some listing.

(Refer Slide Time: 02:12)

So, single level directory so, here this is the this is the simplest possible organization that

we can think about, we have got a list of all the files that are there in the system and the

for all users and then for each entry is nothing but a it contains the corresponding pointer

to the so this is the single level directory. The problem is that then there is a naming

problem because I cannot have another file with the same name as data because there is

already a file called data so, naming problem is there.

Grouping problem is also there because I cannot very easily find out which files are say

C programs so that is not possible because everything is in the same directory structure.

(Refer Slide Time: 03:00)

So, to do something better, we can have two level directory. So, in a two level directory

maybe at the top level at the system level for each user, we create a subdirectory. So,

user 1, user 2, user 3, user 4 so, these four entries are there in the master level directory

or master file directory. And, in the user file directory for user 1 maybe this there are

four files that are there so, it is a given similarly where user 2 there are two files.

Now, you see that this name a is repeating at many places so, all the users they have got

a file named a, but physically the files are all different so they are not the same file. So,

once you have this hierarchical structure, we can have same name for you can have same

name for different files given by different users and we can for getting a particular files

so, we can we can talk about the path name. For example, for getting this user 1 slash a

so that actually refers to this file, similarly, user 2 slash a refers to the second file so like

that.

So, can have same file name for different users, searching becomes efficient because

once the path name is given from the top you can just search by those path name and

come to the particular entry. And then no grouping capability so, again you cannot group

the files as per their types so that is not possible, but anyway so this is much better than

that single level hierarchy.

(Refer Slide Time: 04:33)

You can have a tree structured directory also. So, like so instead of two only two level, I

can have multiple level and at any level so, we can have simple file or we can have a

subdirectory like you see that this one in this case so, this under this directory spell. So,

we have got two files stat and dist and there is another directory mail. So, under this mail

we have got say these four entries out of that this exp is a file so this is a file and these

are again subdirectories.

So, this way, I can have this tree structured organization. So, there are there are multiple

levels and at each entry in the tree structure, it can be another directory or it can be a

simple file so both are possible.

(Refer Slide Time: 05:26)

So, that way this tree structure directory is the most common one that we have in any

operating system that that helps us in finding this thing. So, tree structured directories

they are efficient for searching, we have got grouping capability because we can just we

can so all the programs may be kept under this prog subdirectory, all experiments we

kept under the experiment subdirectory. So, like that we can keep them under separate

subdirectory.

So, we have got the grouping capability. So, we have got the current directory or the

working directory concept. So, we can change the current directory by the command like

cd, most many operating system will accept the command cd for change directory and

we can specify a path for the live directory to which you want to change. So, this slash

spell slash mail slash prog so, it will take me to the prog in this case so, it is starting a

spell, mail and then this prog.

So, it is taking me to this directory so now, if I do now if I do a type list. So, it will list

town all the files so it will be typing this file lists there. So, whatever so, this file will be

printed, the content will be printed so, type list. So, list is the file so, it will searched in

the current directory that we have.

(Refer Slide Time: 06:42)

So, we can have absolute path and relative path. So, absolute path means you are

specifying the entire path from the beginning of the file system like say this one. So, this

is an absolute path, but assuming that at present we are in the spell directly. So, if we say

that it is if we simply write like cd so, if we. So, if we simply write like cd mail slash

prog. So, assuming that we are at present in the spell directory so, we can write like this

so, the means the initial slash is missing.

So; that means, that with respect to the current directory, we are talking about the path.

So, that way we have got this relative path also. So, we can have absolute path, we can

have a relative path for specifying the filename. So, creating a new file is done in current

directory and deleting a file so that is also done from the current directory. So, name is or

Unix, it is the command is rm, for other operating system it will be different. Similarly,

you can create a new subdirectory by making using a command something like mkdir ok.

So, again this exact commands may vary from operating system to operating system but

we can do that.

(Refer Slide Time: 07:58)

Now, sometimes we use the some graph type of directory. So, it is required because the

some file has to be shared across number of directories, like here you see this particular

file so this is shared from this part as well as this part. So, this is required to have a better

view of the organization so that as a user, when you are coming from spell you see that I

have got this file count as well as this directory words and this file list.

On the other hand so this one when you are coming by this dictionary so, you find that

you have got this file count and then directories and also this w from here and the words

from here they point to the same directory. So, as a result you can come to this position

either from this path or from this path. So, that actually gives a better view of the file

organization, but of course, it is difficult because if you are say deleting say or suppose

you are at present in this path and you are deleting this w.

So, if you are deleting this w, it should not delete this entry only this link should go so,

that should happen so this is very important. So, we can have the shared subdirectories

and file so that makes the sharing easy in acyclic graph directory but of course, we have

to be careful because some files may get some files, shared file should not be deleted

once the link is gone.

(Refer Slide Time: 09:24)

So, files or subdirectories have two different names or aliasing, only one actual file

exists. So, any changes made by one person are immediately visible to the other and how

we implement the shared files and subdirectories, we can duplicate the inode information

about the shared file or subdirectory in each of the subdirectories that point to the shared

structures so, we can copy the inode structure. If some information changes about the file

it had to be updated in several places.

So, one inode has been copied so if one of the processes they change the file then all the

places they need to be modified. Have a new directory entry type which is link. So, if

you look into this operating systems like Linux and all so you will find this file type link

so, which is not physically the file, but it is actually a link to the actual file. Say, other

operating system like windows also they have got this feature so we got this link file. So,

whenever you are deleting a file. So, if there are links coming to that file then only the

link will be deleted not the actual file. So, that way it is useful.

(Refer Slide Time: 10:33)

A link may be implemented as an absolute or a relative path name. So, that is there just

like absolute and relative pathname for file so you can have for the links also these

absolute and relative pathname. When a reference to a file is made, the directory is

searched. If the directory entity is marked as a link then the name of the real file is

included in the link information.

We resolve the link by using that path name to locate the real file that. So, so once it

once it is found that it is a link so, we find out the actual file name and then the search

starts with the actual file name. So links are easily identified by their format in the

directory entry. So having some special character in the name of the in the type name by

having a special type on system that support types and effectively by means of indirect

pointers.

Operating system ignores this links when traversing directory trees to preserve the

acyclic structure. So, when you are if you traversing the entire tree and if you have got

this type of links then these those links are avoided because then the same thing will be

repeated again and again. So, that are they are avoided for a listing of the entire file

system.

(Refer Slide Time: 11:44)

If you want to delete a file so say is under this directory. So, dict count so, this file is

deleted. So, naturally there will be dangling pointers that will come. So, solution is to

have some back pointers so that we can delete all pointers and. So, variable size records

is that is a problem and back pointers using a daisy-chain organization. So, this can also

be used and we can entry hold count solution. So this is the best one basically what we

try to do is that we try to see like how many how many such pointers are there and when

that count becomes zero then only the file will actually be deleted.

Otherwise, what will happen is that if you delete this file. So, there so, from this side it is

deleted. So, from this side this pointer becomes a dangling pointer so that is that is a

problem. So, if we have got back pointer so that we can delete all pointer. So, if I have

got a pointer also like this. So, apart from this one so, if I also have a pointer from the

file to like this then once this file is deleted by this link then if we go by this back pointer

to figure out like what are the duplicate entries and delete those duplicate entries also.

So, this is a problem, but naturally this size becomes variable. So it can be used as daisy-

chaining structure that is there for interrupt processing and also not go into that because

that will be very complex.

(Refer Slide Time: 13:11)

And we can we can have the general graph directory structure. So, there we can have the

cyclic structures also like here in this case, you see that this avi so, this book is pointing

to avi and then this avi is in turn avi is in turn pointing to this book so that way we have

got a cyclic structure.

So, this is the most general form whether we follow it or not so that is a question. So, it is

this is most general graph for the directory structure so that is not followed because in

most of the cases what happens is that we go up to this acyclic graph structure and stop

at that point. So, this directory structure, it uses the acyclic graph structure only does not

going to cyclic graph.

(Refer Slide Time: 13:54)

So, how do we guarantee that there are no cycles? So, we can allow only links to the file

not subdirectories so that is one possibility like in this previous case. So, from this we

were pointing to a subdirectory so that way it was a problem. So, if that is not allowed

then a cycle can be avoided or we can do some garbage collection is something is deleted

then after sometime, we do we check all the pointer to see that they are all valid.

If something is not valid then we can remove that pointer so that way we can do some

garbage collection and rectify the directory structure. Every time a new link is added, use

a cycle detection algorithm to determine whether it is or not. So, that is very very costly

operation I should say, but if you are really looking for this general graph directory

structure then we have to do it like this.

(Refer Slide Time: 14:45)

Then to provide the protection so, file owner or creator should be able to control what

can be done and by whom. So, what can be done so, that is the type of access read, write,

execute, append, delete, list. So, I may want to read the content of the file, I may want to

modify the file by during the write, I may want to execute a file, I may want to write

something at the end of the file that is happened, I may want to delete the file or I may

want to just list the content of the particularly the directory files so, list the content of

that.

So, these are the different types of accesses that we have for a file considering both the

general files and directory files. Now, out of these accesses for a particular file or

directory, what are the accesses given to individual users so what can be done and who

can do these things. So, these are the two things that we have to answer.

(Refer Slide Time: 15:40)

So, if you divided into this access into different groups the mode of access. So, there is a

read, write and execute. So, these are the three different modes by which we can we can

access a file. There are three classes of users particularly on Unix or Linux operating

system. So, these users are divided into three groups owner, group and public.

So, owner actually who created the file and he owns the file and then the people who are

close to that owner may be so they may be a development team and also they be able to

they form a group and outside that all other so, they are the public. So, we may want to

set different type of access rights for different classes of people. So, with each file and

subdirectory, we can keep nine protection bits three bits for owner, three bits for group

and three bits for public.

So, owner access so, they are called RWX bits in Unix operating system. So, if it is if the

three bits as the octal number 7. So, these bits are all 111. So, 6 is octal number 110. So,

this is so, I can say that for the owner, I give all read, write, execute permissions so, all

the bits are 1. So, the octal number is 7.

So, group it is I want to give only the read and write, but no execute permission. So, that

way the permission become 6 and for the public I want to give only the execute

permission not read write permission so that way, it becomes 1. So, I give 7 to owner, 6

to group and 1 to public and that way I can set the access bits.

(Refer Slide Time: 17:21)

To create a group, we can ask the system manager to create a new group in terms of

name for example, G and add to some and add some users to the group. Say, maybe we

have got two users Judi and Mark so they are added to say group G. For a particular file,

say game, define an appropriate access. So, attach a group G to a file.

So, can we can we can we can we can by the commands chgrp. So, this is this comments

are all taken from say Linux operating system. Change the group G games so, for the

game file so, it is a group id is changed to G. So, this g becomes the group of this file.

Now, we can set the protection bits like this so, by the by this command chmod. So,

chmod command is change mode. So, 761 so, 7 so, this is an octal number as I was

explaining. So, the owner has got read, write, execute permission group has got only read

and write permission and public has got only execute permission by means of this chmod

command so, we can do that.

(Refer Slide Time: 18:28)

If you look into a directory listing or Unix operating system. So, they may look like this.

So, first few bits so they are actually identifying the read, write, execute permissions for

the people users of the system. So, the first bit which is kept here as a dash and the for

the few other entries, it is equal to d tells that whether the entry is a normal file or a

directory. If the bit is shown as d; that means, it is a directory list directory file and if it is

shown as a dash; that means, it is an ordinary file.

Now, for all types of file I can have read, write permission so, rw dash. So, owner has

got only read write permission. So, the file is not executable as you can understand that

this is a postscript file into dot ps the postscript file so that cannot be executed. So,

execute permission is not set for group also it is read write and this for others public so,

this is only read.

So, similarly, we can have other this thing. So, for directory structure so I can have read,

write, execute permission. So, that will allow me to list down the directory also. So, so

lib for example, is a subdirectory. So, lib is a subdirectory owned by the group pbg and

the group faculty so, that way we can have this lib as a group. So, we can have this

directory listing like that.

