

Operating System Fundamentals
Prof. Santanu Chattopadhyay

Department of Electronics and Electrical Communication Engineering
Indian Institute of Technology, Kharagpur

Lecture - 40

Deadlock (Contd.)

 (Refer Slide Time: 00:29)

Next we will look into several instances of resource types the previous deadlock

detection algorithm. So, that was based on cycle detection mechanism so, that was using

only one instance of each resource. Now if there are multiple instances then we can use

an algorithm which is similar to bankers algorithm for this deadlock detection deadlock

avoidance mechanism that we discussed previously.

So, again let n be the number of processes and m be number of resource types now we

have got an Available array. So Available is a Vector of length m and if available j equal

to k then there are k instances of resource type R j available. Then we have got a matrix

Allocation n by m matrix if location i, j equal to k, then P i is currently allocated k

instances of resource type R j and then Request so this is basically the current request

that each process has.

So, n by m matrix that indicates the current request of each process, if request i, j equal

to k, then process P i is requesting for k additional instances of resource type R j. So this

is the situation so, current allocation current availability and current requests. So with

these three things so we will try to see whether there is a deadlock in the system or not.

(Refer Slide Time: 01:46)

So, the algorithm is similar to banker’s algorithm that we discussed previously. So, here

also that safety algorithm that we have so, some sort of safety algorithm will be run to

see whether the system is deadlocked or not. So this Work can Finish so these are vectors

of length m and n respectively when do we initialize them. So initialize Work to

Available and then. So, if Allocation i is not equal to 0 then Finish i equal to false,

otherwise Finish i equal to true.

So, if Allocation is Allocation i is equal to 0 that means, this is so, no resource has been

allocated. So, those processes need not be considered. So they that is that they are not

contained they are not coming into this deadlock process at all because they are not they

are not holding any resource. So they cannot participate in the deadlock situation. So,

those processes are removed so this is the first modification that is done if there is no

resource allocated to a process i; that means, it cannot be part of deadlock.

Then after that we try to find an index i such that it is not finished. So, Finish i is false

that is basically it is holding some resource and it is Request is less or equal the currently

available one that is Work array. So if Request is less than Work and it is not yet finished

then we will we try to find an index i which satisfies this condition. So if no such i exists;

that means, again the same thing either 2 a or 2 b has become false, if 2 a is false; that

means, Finish i equal to false for if we cannot find. So, if we come to this state for Finish

i equal to false or Request i less or equal 1 so, if we cannot find any such i then we come

to step 4.

So, we after coming to step 4 if you find that there exists some process which is not yet;

which is not yet finished whose Finish i is false; that means, the system is in a deadlock

state and otherwise if Finish i is; Finish i is false then this process P i is deadlocked.

Otherwise we will if Request i is less or equal Work so, the process has to wait for the

resources to be allocate to available. So, that way it has to wait for that and then we

update this Work array Work is Work plus Allocation i. So whatever resources are

available so, that we allocate to the process P i and assume that the process P i is over

and set Finish i to true.

So, with the currently available resources process has maximum request can be satisfied

so, that we do and declare that the process is over. So, if we find a situation that Finish i

is false for some process at which at the at point of time where we cannot allocate

resources to any other processes. So in that at that time we say that the system is in a

deadlock state.

(Refer Slide Time: 04:52)

So, let us take an example and try to understand that how it works. So suppose we have

got 5 processes P 0 to P 4 and there are three resources resource types A 7 instances B 2

instances and C 6 instances. Now if we take a snapshot at time T 0 suppose this is the

situation that process P 0 has been allocated 0 1 0 that is 0 instance of A, 1 instance of B,

and 0 instance of C. P 1 has been allocated 2 0 0, P 2 3 0 3 so like that and the allocation.

So, request the current request that we have is P 0 is not requesting for anything, P 1 is

requesting for 2 0 2 so, it is requesting for 2 instances of process A, 0 of B and 2 of C.

So, like that P 2 also not requesting. So, P 1 so this, P 3 is also not requesting so like that.

So, when the algorithm starts so if you look into this algorithm it finds that if Allocation i

is equal to 0 in that case finish i will be set to true. So, this P 0 and P 2 so, actually for

none of them this allocation is allocation array is null. So, as a result all of them their

Finish i is equal to false.

Now, currently available resources ABC they are 0 0 0, because A has got 7 instances

and this 2 plus 3 plus 2 7 is already in use, B has 2 instances already in use and C has 6

instances that is also already in use so there is nothing available in the system. Now if we

run this the detection algorithm so, it tries to see if any process can be finished with the

currently available sources.

Now, you see this P 0 and P 2 so, these two processes they are not requesting anything.

So, we can assume that without requesting any more resource the process P 0 and P 2

will finish off. So, if you compare with this banker’s algorithm which was doing this

deadlock avoidance. So, the maximum requirement was specified by the process so the

system was checking whether though currently it is not requesting for anything it has the

potential to ask for going up to the maximum requirement of the process.

But in this detection algorithm so, we are not bothered about what will happen in future.

So, we are just trying to see what is the current situation. So, we assume that if at present

the process is not requesting for any resource we are optimistic and we say that at present

if we can satisfy the request. So, at present at least the system is not in deadlock state so

we can continue with the system so, that is the difference.

So here we do not do that max minus allocation as the maximum requirement the process

can have so that particular calculation is not there. So here we just try to satisfy the

request ok. So, here you see this P 0 and P 2 so, they can be satisfied immediately

because they are not requesting for any more resource. So, if P 0 is finished then if P 0 is

finished then it will return the current allocation. So, the allocation with the available

will become 0 1 0 and then P 2 will finish so, P 2 finishes then this 0 1 0 will be

becoming 3 1 3.

With that 3 1 3 we can satisfy this P 3 and once P 3 is over so, this 2 1 1 will be

available. So, this will become 5 2 4 ok, with that 5 2 4 we can satisfy this P 4 so this 0 0

2. So, P 0 P 2 is already done. So, after P 3, so we can satisfy P 4 with this 0 0 2. So, this

0 0 2 so, that is satisfied so, this becomes 5 2 6 and with that we can satisfy P 1 and P 1

can be so, this 2 0 0 will be written so that is 7 2 7 2 6 it is ok. So, in this way we can

satisfy the current requests for of all the processes. So, there exists a sequence in which

all the resource all the processes requests can be satisfied.

So, at that point so, in this way the algorithm continues then it will have Finish i equal to

true for all i. So, we can say that system is not in a deadlocked state. So, we can continue

with the system operation. So, in future some other process may request for some

resource and then the situation may become a deadlock situation. So, that is that

possibility is there and then the deadlock detection algorithm will declare that there is a

deadlock in the system.

(Refer Slide Time: 09:29)

So, suppose this is the situation, suppose this process P 2 so, it requires 2 more instances

of type C. So, process P 2s P 2 sorry one additional instance of prior type C. So, process

P 2’s requirement become 0 0 1, now you can say that whether the system is in say

deadlock state or non deadlock state so, let us try to see. So P 0 can be satisfied P 0

equals 0 0 0. So, once P 0 is done then this current availability becomes 0 1 0, with this 0

1 0 you see you cannot satisfy any of this request. So, this is done. So, 2 0 2 cannot be

satisfied, 0 0 1 cannot be satisfied, 1 0 0 cannot be satisfied, 0 0 2 also cannot be

satisfied. So, none of the requests can be satisfied.

So, the all the processes they will now be waiting for the resources to be released which

are held by other processes. So, system will go into a system is in a deadlock state. So, if

we try to look into what is the state of the system, we can reclaim resources held by

process P 0, but insufficient resources to fulfill other process requests. So, deadlock

exists and consisting of processes P 1 P 2 P 3 and P 4 so, whichever process the Finish i

equal to false that becomes a part of deadlock.

So, for P 0 Finish i is true, but for P 1 P 2 P 3 P 4 Finish i remains equal to false so, they

become part of these deadlocks. So, all these four processes they form the part of

deadlock. So, this deadlock detection algorithm will do like this and it will be; it will be

able to detect if there is a deadlock in the system. Now, once we have detected deadlock,

then what can we do.

(Refer Slide Time: 11:16)

So, if a deadlock is detected we must abort or rollback some of the processes involved in

deadlock because the so rollback is a technical term rollback means. So, we have to; we

have to take the process out of the system and whatever it is actually in the middle of

some computation. So, the difficulty is that it is holding some resources. So, we have to

take back the resources from the process.

So, now you see that a process may be it is a big one it is a big one and as the process

was at this point when this deadlock has been detected and the process has to be rolled

back. Now one possibility is that we can restart the process from the beginning, if we

restart the process from the beginning then lots of computations are to be done again or

other possibilities that we can have some safe points within the program which we called

checkpoints. So, you can have some checkpoints and we can restart that process from

there now from the nearest checkpoint.

So, these checkpoints are such that at this point the process will not hold any resource

ok. So, as if the as far as this resource allocation is concerned as if the process is coming

afresh ok. So, or we can go back to the beginning of the process and start from there. So,

if deadlock is detected we must abort a rollback some processes involved in the

deadlock. So, whether roll back rolling back one process is sufficient or not that depends

the way in which these deadlock cycles are formed. So, it may be that we need to roll

back multiple processes and need to decide when and how often to invoke the deadlock

detection algorithm.

So, as we have said that deadlock detection algorithm so it is costly so, it is quite taking

quite some time. So, to answer this question let that is when should we run this deadlock

detection algorithm. So, how often a deadlock is likely to occur? So, that is the first

question that we need to answer.

If we say that the possibility of occurrence of deadlock is pretty high in that case we have

to run this deadlock detection quite frequently, otherwise we can do it at a much longer

interval of time and how many processes will need to be roll back one for each disjoint

cycle. So, if we have several cycles for single instance situation the wait for graph so, we

can have several cycles and for each cycle that we have there so, we have to roll back

one process.

 And for this multiple instance one so, there is no straight cut answer. So, you have to see

after rolling back whether the system is still in deadlock or not by running that detection

algorithm and if the detection algorithm again finds a deadlock in the graph in the system

then we have to again roll back some other processes so, that way it is quite costly.

If detection algorithm is invoked arbitrarily, there may be many cycles in the resource

graph and so we would not be able to tell which of the many deadlock processes caused

the deadlock. So, it may so happen that once we run this deadlock detection algorithm

so, there are say 2 cycles in the process ok. So, this is the this is one process P 1 say may

say P 1 which is involved in 2 cycles. So, it is making a deadlock with this processes as

well as it is making a deadlock with these processes.

So, ideally we should be able to see the situation that process P 1 is the dead locking

process. So, we should try to remove P 1, but it may so, happen that we remove one

process from here. So, as a result this cycle is broken, but the other cycle still remains

then again you have to select some other process and again remove that process.

So, it may so, happen that if this process P i is involved in deadlock with multiple cycles

then for each cycle one process has to be rolled back so that can happen. So, this is not a

very easy thing to do to determine which process is the best one to be rolled back. So, if

detection algorithm is invoked arbitrarily there may be many cycles in the resource graph

and so, we would not be able to tell which of the many deadlock processes caused the

deadlock. So, that is here this process P 1 as we are talking about. So, that makes it

difficult of course, we do not have much choice there.

(Refer Slide Time: 15:44)

Now, if we want to recover from deadlock. So, the methodology to be adopted is process

termination, we have to terminate the process. So, abort all deadlock processes this is the

most easy and I should say the robust approach.

So, whichever process comes in the deadlock cycle you remove all those processes or

abort although all the deadlocked processes. Another so this is I should say a brute force

method and another method maybe that about one process at a time until the deadlock

cycle is eliminated. So, you try removing one process and see whether there is the a still

deadlock in the system, if there is still deadlock in the system you try removing another

sub process. So, this way we can remove one process at a time until the deadlock cycle is

eliminated.

Now in which order should we choose to abort? As I said that there may be a multiple

number of processes which are involved in the deadlock. Now the first the second

suggestion says that you abort one process at a time so, which process to abort. So,

certain things we need to consider for example, priority of the process. So, if a process is

of high priority then it is advisable that we do not abort that process at the beginning,

when other processes low priority process is removing them so, if we are if we could

resolve the deadlock then that is better. So, higher priority processes they should not be

rolled back.

And how long process has computed and how much longer to completion. Now, you see

that it may so happen that this is the total program code that the process has to execute

and it is at this point of time. Now you can say that this is the total length of the process

and the process is at this point.

So, it is likely that it has got this much amount of code left for execution, but this is a

very crude estimation because you see that from this point there may be a jump and it

goes back to this point again. So, that can happen, but this may be a measure that if the

process is executing for a long time then it is very much likely that process has almost

done with it is complete or computation.

So, if we allow the process to continue then possibly it will be finishing off soon and

release all the resources and at the same time since it has computed for a long time so, it

has done lot of computation. So, if it is rolled back then it will do those computations

again so, system resources will be again required.

So, that way one positive side for this process the positive logic for this process long

process is that it has done almost the computation over and it has compute computed

over a long time. However, on the other side you can say that since the process is

involved in deadlock and possibly it has grabbed lots of resources over the time and it

has interfered with the system operation for quite some time.

So, if we roll back this process then maybe other processes they will find it easy to

continue through the system to pass through the system and that way the possibility of

deadlock will be less than next time. So there are both positive and negative arguments

in favor of this long process and against it then the resources the process has used. So, if

the process has used lots of resources then it is likely that the it will finish off soon, the

process have issue used only a small number of resources, then maybe again you can say

it is a good process it is not requiring lots of resources. So, again there are plus and

minus for both the sides.

Then resources process needs to complete how many resources are needed for

completion. So, if that number is high then the possibility that the process will again

come into a fall into a deadlock cycle so, is high. So, that process may be that want to

abort and how many processes will need to be terminated. So, how many processes we

will need to be terminated like if I go like this then how many processes are going to be

terminated so that can also be calculated and is process interactive or batch type.

So, if your process is interactive in nature now if we reboot or restart that particular

process then naturally the user will again have to enter all the data. So, user will feel bad

about the system whereas, the back system so, there we do not have that problem

because batch process anyway runs in the background. So, if we run it in the

backgrounds then the process will definitely it will not cause much harm as far as the

user feelings are concerned so that is what we have got arguments so, those all those

points are to be considered.

(Refer Slide Time: 20:36)

Now how to recover from deadlock so, recovery from deadlock is one possibility is

resource preemption. So, we take the resource back from the process maybe the process

continues, but the resource is taken back, now due to this taking back of resources so it

may so happen that process has to redo some computation again later. So, that is there,

but this preemption this resource preemption can be there.

So, naturally the problems or the sub problems that we need to solve is selecting a

victim. So, you need to select which process should be which process should be taken as

a victim and for taking back the resource, then rollback return to some safe state and

restart process for that state. So, basically roll back as I as I was telling that there may be

some checkpoints in the program so, we roll back the process till that previous

checkpoint for one and from that point the process restarts.

Then starvation same process may always be picked as victim so, include number of

rollback in cost factor. So, it was so happen that every time the deadlock is detected the

first time the deadlock is detected one process is taken as a victim and that is rolled back.

And since this process could not finish so, again the it will come to the system and then

again next time it also falls into a deadlock and then again as a victim so, this one is

selected.

So, that can happen like the same process is selected as victim again and again so that is

that will create starvation for the process. So, we can have some rollback factor number

of rollbacks in the cost factor of the process so that this starvation will be less.

(Refer Slide Time: 22:26)

So, deadlock is a serious problem definitely and it needs to be prevented, avoided or

recovered. There is no single strategy that may be sufficient and it is often very costly in

terms of system performance and job completion.

So, this way as we as I said that we can have this deadlock situation occurring in the

system, sometimes we may not do anything as I as is done in the say the UNIX operating

system like that ostrich algorithm. So, it does not do anything if the deadlock happens

then the system administrator will kill some of the processes or reboot some of the reboot

the whole system in the worst case and so, we have got this thing ostrich algorithm, but

to be more serious about the deadlock we should have this prevention, avoidance or

recovery mechanism introduced.

So, and as we can say that no single strategy may be sufficient so, as we have said that

prevention. Prevention means we have to violate one of the 4 conditions like mutual

exclusion, hold and wait, no preemption and that circular wait. Now, a violating of if

these conditions for all types of resources may be difficult. So, for certain resource types

so, it may be possible that we violate one of those conditions so as a result it does not go

into the deadlock so, deadlock is prevented.

So, if deadlock is not prevented then we can go for the avoidance type of strategy. So,

avoidance strategies are fine, but this is over restrictive in some sense, because it is not

allowing the system to proceed if there is a even small amount of chance for deadlock

occurring in future. So, it is just looking forward and trying to see whether there is any

possibility of deadlock that can occur in eventually it may occur and as I say that

situation may not occur at all. So, maybe after going to an unsafe state, the system comes

back to the safe state so that can happen.

So, this avoidance policy is good, but it is some it is too restrictive and then we have got

this detection and recovery based schemes. So, detection recovery based schemes so,

they are fine, but again the question is how frequently we should run this detection

algorithm and as it is said the detection algorithm will be it will run when the system

throughput is pretty low even if the degree of multi programming is pretty high.

So, that is a; that is a indication that there is some processes are in deadlock state. So,

none of them can proceed as a result there is a the system throughput has become low.

So, then we have to run this deadlock detection algorithm and then some of the processes

which are involved in the deadlock situation are detected and they are rolled back so that

this deadlock is recovered.

Of course we have got priorities of the processes and other issues to determine like

which one should be selected as victim. So, this way most single strategy is sufficient

and often it is very costly in terms of system performance and job completion, because

system performance is becoming poor and this job completion in terms of number

throughput of the system so that is becoming pretty low. So, these are the things that we

have to keep in mind.

So, deadlock is definitely a serious problem and you see that while solving many

problems like a critical section problem and all there also we have to be careful about

this deadlock situation like one typical situation is like this suppose we are trying to

solve a mutual exclusion problem.

(Refer Slide Time: 26:19)

So, we are trying to solve a mutual exclusion critical section problem and then in this

critical section problem so, we are solving using semaphore. So, we have got semaphore

say a S o1ne which is initialized to one and we have got another semaphore S 2 which is

also initialized to 1. Now the process P 1 that we design is like this so, this is wait for S

1, then we have got wait for S 2 and then we have got the critical section code. So, this is

the critical section code that we have and after that we have got signal S 2 and signal S 1

whereas, process P 2 while writing it so, we write it like this.

So, it is wait on S 2, then wait on S 1, then this is the critical section code and after that

we do a signal on S 2 and signal on S 1 ok. So, in this case you see that otherwise the

programs are fine the processes will run pretty well, but the difficulty is suppose this

process P 1 comes it executes up to this much. So, S 1 has become equal to 0 and this

one the process P 1 gets descheduled and process P 2 comes P 2 executes up to this

much.

So, this is S 2 becomes equal to 0, now after that when the process P 2 it will execute a

wait on S 1. So, this process P 2 is waiting for this semaphore S 1, but S 1 is already 0

and S 1 is currently with process P 1. So, I can say this process P 2 it is waiting for

process P 1. So, after some time process P 1 will come into the system and process P 1

will execute the next line wait on S 2 and S 2 is currently equal to 0 and S 2 is held by P

2. So, P 1 is actually waiting for P 2. So, this is the wait for graph for this particular

situation. So, this is again a deadlock condition.

So, you see that even if this system the programs that are written by the same

programmer or the same application. So, it may so happen these semaphores are used in

such a fashion that it creates difficulty, sometimes difficulty comes because while

writing this solution to some concurrent programs. So, instead of initializing the

semaphore to 1 we initialize the semaphore to 0 for example, suppose we write like wait

S 1 and then this is the critical section code and then we have got this signal S 1 and this

semaphore has been initialized to 0. So, then at this point itself the process will be

waiting forever so, process will never progress.

So, but this is not a deadlock situation because this process is not hampering others, but

it may so happen that a number of processes they are becoming they are using a set of

semaphores and in such a fashion that they form a in the of they form a cycle in the wait

for graph. So, these situations should be avoided and while try trying to develop

concurrent applications. So, we should be able to see this situation and we should write it

properly that this semaphore usages are proper. So, with this we conclude this discussion

on deadlock in the next class we will start with the memory management policies.

