
Operating System Fundamentals
Prof. Santanu Chattopadhyay

Department of Electronics and Electrical Communication Engineering
Indian Institute of Technology, Kharagpur

Lecture - 38

Deadlock (Contd.)

 So, next we will be looking into the avoidance policy, Deadlock avoidance policies.

(Refer Slide Time: 00:26)

So, prevention is fine; so prevention is actually trying to do something so that we know

that this deadlock will not occur. But, they are a bit synthetic solutions we should say

because they are imposing different type of restrictions on the resource type and all. And,

it is difficult for a write for writing a process by an application programmer so that these

resources are requested in particular sequence.

So, unless so what will happen is that the programmers they will ask for all the all the

resources that they need at the very beginning to just to avoid the possibility that I may

not be granted decode resources later. So, they will try to put all the resources at the

beginning, so that they can as play it safely and release only at the end. So, that actually

effects the system resource utilization factor. So, not a very good solution always.

So, next we will be looking to these avoidance policies. So, this deadlock avoidance

policies they ensure that the system will never enter into a deadlock state. So, somehow

so, we have we have to guarantee these thing the by means of this resource allocation

policies and all that the system will never enter into a deadlock state.

It requires that the system to have some additional a priori information available on

possible resource requests. So, it assumes that for every process we know what are the

maximum resource requirements of each types of resource for a process. So, for; so

maybe I have got I have got say three resource types R 1, R 2 and R 3 in my system and

for process 1 may be it so, maximum requirement is 3 instances of R 1, 2 instances of R

2, 5 instances of R 3.

Similarly, for P 2 may be it requires 1 instance of R 2, it does not require any instance of

R 1 instance of R 1, no instance of R 2 and 4 instances of R 3. So, these are all the

maximum requirements for the processes. Somehow this has to be known and naturally

if the system follows this particular policy, then the programmer may be asked to provide

at the very beginning what is the maximum resource requirement of different types of

resources that is there in the system.

So, simplest and the most useful model requires that each process declare the maximum

number of resources of each type that it may need. So, 3 for example, P 1 requires at

most 3 instances of R 1 does not mean that P 1 require all of them simultaneously, so all

it will require all the three at together. It just tells that I may need at most 3 of R 1, 2 of R

2, 5 of R 5 R 3 and during execution so, it will put the individual requests, but the total

request will never be exceeding 3 for R 1, 2 for R 2, and 5 for R 3 simultaneously.

So, this that; so the process has to declare the maximum number of resources of each

type that it may need and the deadlock-avoidance algorithm it will dynamically check

whether the resource allocation state it will dynamically examine the resource allocation

state to ensure that there can never be a circular-wait condition. So, it will check whether

there can be a circular-wait or not and they.

So, resource-allocation state is defined by the number of available and allocated

resources and the maximum demand for each process. So, this resource-allocation state

so, what are what is the currently available and allocated resources that least and the

maximum requirement for the processes. So, that will define this resource allocation

state.

(Refer Slide Time: 04:26)

So, based on this we can formulate some deadlock-avoidance policy. We will define

some state to be a safe state and some other state to be unsafe state.

(Refer Slide Time: 04:32)

So, this is a diagram, so that tells if this is the total state space that we have; so some of

the states are safe state and some of the states are deadlock deadlocked state. So safe

states are such that if a system is in safe state it can never go to deadlock directly. So if

so this is the total set of states now it says that so, this is a state here and this is a

deadlock state, then we will never have a transition from this to this. So this is never

there.

But, there are some states which are unsafe in nature. So there may be transition from

safe state to unsafe state and from the unsafe state there is a possibility that it will make a

transition to a deadlock state. Of course it is very much possible for that from an from an

unsafe state it again comes back to safe state. But, what we will do we will not allow this

type of transitions at all because if the system goes into an unsafe state then there is a

possibility that it may go into a deadlock state.

Knowing fully well that in really in actuality the system may not be making this

transition, but it will make a transition coming back to a safe state. But, just to ensure

that we will never go to a deadlock state, we will stop this type of transition which will

take the system from safe state to some unsafe state .

So, we will elaborate on this slowly so if we just go back define what is a safe state; a

system is in a safe state if there exists a sequence P 1, P 2, P n of all the processes in the

systems such that, for each P i the resources that P i can still request can be satisfied by

currently available resources plus resources held by all the P j where j less than i. So, let

us try to understand what does it mean.

So, at any point of time I have got a number of processes in the system P 1, P 2, up to P n

and I have got the resources suppose I have got say three types of resources say R 1, R 2

and R 3. Now, this P 1 to P n they have got some requirement for R 1, R 2, R 3. So, they

have they are having , so P 1 is holding some amount of R 1 it for its completion it may

need some more of R 1. So that is depicted by the maximum requirement that has been

declared by the process P 1 at the beginning.

So, process P 1 for its completion which how many more instances of R 1, R 2 and R 3

are required that is known. Similarly, for process P 2 what is what are the extra R 1, R 2

and R 3 instances needed, so that is known. Now if you can somehow ensure that with

the currently available free instances of R 1, R 2, R 3 and so, you with the currently

available instances of R 1, R 2, R 3.

So, if you can satisfy the requirement of P 1, then I can say that P 1 complete. After that

this currently available resources plus the resources held by P 1 they will be released

with that if I am able to satisfy P 2 and so P 2 will finish of and thus the process

continue. So, I just then I take all the resources which are free after P 2 has finished, then

with that if I am able to finish of the next process.

So, among this processes P 1 to P n, so if you can find a sequence in which all this

processes requests can be satisfied by this requirement. That is so, when I am talking

about say Pi so, Pj so, for completion of Pj the resources which are free plus the

resources held by sorry for the process Pi ;for the process Pi, so I can say that. So, for so,

this for process Pi I have got the resources which are currently available plus the

resources which are held by the processes before P i in this chain.

So, I have got this P 1, P 2 P i say P i minus 1 P i, P i plus 1 etcetera. Now, when I come

to this process P i then all the resources which were available at this point plus all the

resource held by this processes so, they are all free now. So, with that if we can satisfy P

i then I can say that P i can be completed. So, the system will be safe state if I can

complete all these processes, so P 1 to P n. So, if I can complete all the processes in this

way when the system is not in a deadlocked state. So, this is a this cannot lead to a

deadlock state, so this is a safe state.

So, this actually what it means is that if P i resource needs are not immediately available,

then P i can wait until all processes P j, j less than I have finished executing and when

they have finished their executing. So, they will release all their resources and then P i

can get all these resources, then execute and return the allocated resources and terminate

and when P i terminates the P i plus 1 can get the needed resources and so on. So, this

way it can continue.

So, if we can find a sequence of processes by which all the requirements all the of the

processes can be satisfied, then we say that the system is in a safe state. So, with that we

can look in to this diagram once more. When the system is in safe state, so, if the system

is in any of these state in this subset then all the requests for all the processes can be

satisfied always.

But, if the sub system is in unsafe system, then all the requests cannot be satisfied.

Though may be the case that the system the processes they make request for their

maximum resources as a result the system goes into deadlock state. But, at the same time

we must understand that a process may not request further resources, but rather release a

few resources.

Maybe it may so happen that a process P 1 it requires say 3 of R 1 and 2 of R 2. And,

when I am looking into the system code the process code at some point of time may be I

am I am at this point, so it has at this point it has got 1 of R 1 and 1 of R 2 with it . So, it

can ask for 2 more R 1s and 1 more R 2 before releasing this resource and that may lead

to deadlock, but we must understand that may be in between so, it releases this resources

also. So, it releases some more resource; so it releases say 1 R 1 and after some time it

releases 1 R 2, then it request for 2 R 1, then it request for 1 R 2. So, it may happen like

this.

So, it see you see that so, when it releases the resource may be from this unsafe state it

can come back to safe state that can happen. But, there is a possibility that without

releasing resource the process will request for further resource as a result it the system

may go into a deadlock state. So, we will try to avoid this we will try avoid putting the

system in unsafe state so that there is potential to go to the deadlock state. So, this is

what we will be trying out in our this deadlock avoidance policies.

(Refer Slide Time: 12:15)

Now, deadlock avoidance it will ensure that the system will never enter into an unsafe

state. Single instance of a resource type, so use a variant of this resource allocation graph

and based on that we can formulate and some avoidance policy. If there are multiple

instances of resources, then we can follow something called a banker’s algorithm and

this banker’s algorithm. So, this will be ensuring that this deadlock can be avoided, will

not go into this will not go into the unsafe states.

(Refer Slide Time: 12:45)

So, resource allocation graph based policy. So this is applicable only when we have got

single instance of every resource. So multi multiple instances are not there, every

resource there is only a single instance. Then the same thing that each process must a

priori claim maximum resource use, so the it may every process must tell of the which

resources it needs. Since there is a there is always single instance, so telling about how

many is of no issue here. So basically we tell what are the resources that are needed by

this process.

And, use a variant of the resource allocation graph with something called a claim edge.

So, claim edge; so this P i to R j it indicates that the process P j. So, process P i may

request for resource R j. So, this is this is not P j, so this is P i . So, process P i may

request for R j and represent by a dashed line. So, what I was telling is that may be

process P 1 it is maximum, so it requires the resources R 1, R 2 and R 3. So, that is

declared by the process at the beginning at present may be process P 1 has got the R 1

allocated to it.

So, process P 1 has the potential to ask for the resources R 2 and R 3. As a result so, we

will put the claim edges to this resources R 2 and R 3. So, we will put a claim edge for R

2 and we will put a claim edge for R 3. So, this is what is told here; so if we will put a

claim edge from P i to R j indicating that the process may request for R j and represented

by a dashed line.

Claim edge converts to request edge when a process request a resource. So after

sometime P i P 1 actually requests for R 2. So when it request for R 2 then this edge will

become a solid edge ok. So as long it is a potential claim, so this is a dashed edge, but

when the process request actually makes the request for the resource then it will be

modified by a solid edge.

And, request edge will be converted to an assignment edge when the resource is

allocated to the process. So, after some if the system allocates the resources to the

process, then this edge will be converted into an allocation edge by removing; so by if

this edge will be converted into an allocation edge by putting the arrow on this side. So,

this resource is now allocated to process P 1.

So, when a resource is requested when a resource is released by the process, then the

assignment edge is reconverts into a claim edge. So after some time process P 1 may

might have released this resource R 2, but since till the lifetime of P 1 ends. So, it can

again ask for resource R 2. So, in that case so, we will be converting this this assignment

edge into again a claim edge. So, this is how this whole thing will work. So, when a

resource is released by a process the assignment edge is converted into a claim edge.

And, resources must be claimed a priori in a in the system, so this they must be required

at the beginning. A cycle in the graph implies that the system is in unsafe state. So, if you

construct a graph like this having this claim edge, request edge and grant edge, allocation

edge then the situation that we get from the graph, so that is the if there is a cycle in this

graph then it is in unsafe state.

 (Refer Slide Time: 16:48)

So, this is what we will try to make; so this is like this. So, resource allocation graph with

claim edges. So, P 1 is holding, so, there are two resources R 1 and R 2 in the system.

So, P 1 can ask for both R 1 and R 2; so we have got two processes in the system P 1 and

P 2. So, P 1 can request for the resources R 1 and R 2 and P 2 can P 2 also can request

for the resources R 1 and R 2.

Now, P 1 is holding resource R 1, so we have got an allocation edge from R 1 to P 1 and

it has a claim on R 2. So, since P 1 has potential to ask for R 2, so there is a claim edge

from P 1 to R 2. Now, P 2 is requesting for R 1 and it has got a claim on R 2. So, it is a it

is at present P 2 is requesting for R 1 and it is it has got a claim for R 2; so this is the

situation.

Now, there is no cycle in this graph. So naturally this is this system is safe. So, why the

system is safe? You can understand that if even if say P 2 in this situation so, if this P 1

is given R 2. So, if P 1 and P 2 both of them come up with their requests, so I can give

this R 2 to P 1. So, P 1 will finish off and then this R 1 and R 2 be given to P 2 and P 2

will also finish off. So, nonexistence of cycle in this particular resource allocation graph

with claim edges so that means, the system is in safe state. So, it cannot go to a deadlock

state.

(Refer Slide Time: 18:27)

Now, going further; so consider the case where claim edge from P 2 to R 2 is changing to

an assignment stage. Suppose, we do it like this that P 2 has requested for this R 2; P 2

has requested for this R 2 and it has granted to it; so R 2 was free. So, when this edge

was not there; so, if we look in to the previous slide, look into the previous slide then R 1

is given to P 1 and R 2 is free.

Now, suppose P 2 requests for R 2, so this claim edge converted into a request edge and

the system allocates this resource R 2 to P 2. Then what happens? The situation becomes

something like this. This R 2 has R 2 is allocated to P 2, so P 2 holds a request for R 1

and there is a claim that P 1 will request for R 2.

Now, the situation is that there is a cycle in this graph, now you see that I cannot give R

1 to P 2; so P 2 cannot proceed. So, this R 1 is currently with P 1. So, P 1 without

releasing R 1 may request for R 2 because there is a claim edge here. So, this claim edge

at any point of time may get converted into a request edge. So, as a result P 1 may

request for R 2 and there will be a cycle coming into this graph; so there will be a cycle

coming into this graph. So, that is existing here.

And, if this claim is converted to a request then there will be a deadlock. So, this is an

unsafe state. So, this is not a deadlock state at present because till now P 1 has not

requested for R 2. So, this is the potential request. So, if P 1 does not request for R 2 at

any point of time if P 1 before P 1 instead of P 1 requesting for R 2 if P 1 releases R 1,

then of course, the system will go back to the safe state, because now P 2 can be given

both R 1 and R 2 P 2 will finish off then P 1 comes out some other time it request for R 2

then it is getting R 2, so that is possible. But, this is an unsafe state ok. So, it can go to a

deadlock state or it can come back to a safe state; so both are possible. Now, there is no

deadlock at this point, but it is an unsafe state. So, we can proceed with this.

 (Refer Slide Time: 20:51)

So, resource allocation graph based algorithm is like this suppose that process P i request

for a resource R j. The request can be granted only if converting the resource edge to an

assignment edge does not result in the formation of a cycle in the resource allocation

graph; otherwise, the process must wait.

So, whenever a process is requesting for a resource, so if you convert the resource edge

to an assignment edge and see that there is a there is a cycle in the allocation graph then

there is a potential for deadlock. So, we have to we have to be careful; so we have that

the it is going to an unsafe state. So, we have to stop that allocation, though resource is

available, so it will not be allocated just to avoid that case that it it may go to a deadlock

state.

(Refer Slide Time: 21:43)

The next algorithm that we will look into is known as banker’s algorithm. So, this

banker’s algorithm, so there are multiple instances of a resource type. So, if there are

multiple instances then that that cycle detection algorithm does not work. So, we have to

go for some more complex algorithm and one such algorithm is the banker’s algorithm.

So, each process must a priori claim maximum usage that is fixed as I said that a process

must tell how many instances of different resource types that it may needs in its entire

lifetime. So, that way each process must a priori claim the maximum usage. When a

process requests a resource it may have to wait and when a process gets all it is resources

it must return them in a finite amount of time.

So, if process request for resource it may have to wait because the resource may not be

granted and when the process gets all it is resources, then it should not be that it holds the

resources infinitely. So, it will use those resources and release all those resources, so that

should be done. So, process execution time is finite.

So, this is like an interest-free bank situation, where a customer establishes a line of

credit and borrows money in chunks that together never exceed the total line of credit.

So, it asks for money now that does not exceed the maximum limit that it has. Once it

reaches the maximum the customer must pay back in a finite amount of time. Once it has

got you reached the maximum value then the amount must be the entire amount must be

returned within a finite amount of time.

So, this is that is why this algorithm is known as banker’s algorithm. So, you if you look

into the similarity between these two these statements here; so, each process must ah

claim a priori the maximum usage. So, this is similar to a customer establishing a line of

credit. So, what is the maximum credit that the customer may ask for so, that is there.

And, then borrows money in chunks; so, this is basically the requesting for the resource.

So, this is when a process ah request a resource, so then it has to wait. So, that way it has

to wait for that. So, here also the customer is asking in chunks. So, that is requesting for

the resources and may have to wait because if the bank finds that it may violate the total

amount of the money that the bank will have with it to satisfy all the customer. So, that

may not be that may be violated.

So, and may be only if some other customer pays back the whole amount, then only this

customer will be given the money. So, like that. And, when the process gets all its

resources it must finish within finite time and release the resource. So, that is basically

the third condition that when the amount reaches the maximum, then the customer must

pay back in finite amount of time. So, that is why this algorithm is known as banker’s

algorithm because it mimics the behavior of a banking system.

(Refer Slide Time: 24:50)

Now, the data structures that are used in banker’s algorithm are like this, we have got n

number of processes and m number of resource types. So, we have got an array

Available, so it is a vector of length m. If Available j equal to k, then they are k instances

of resource type R j available. Then we have got a Max n by m, so Max i, j equal to k;

that means, the process P i request at most k instances of resource type R j. So, this is

basically the process i requesting for resource R j what is the maximum number of

instances that it can ask for.

Allocation is an again an n by m matrix and Allocation i, j is equal to k, then P i is

currently allocated k instances of resource j. So, if Allocation i, j equal to k, then P i so,

that it is currently allocated k instances of resource j. And, Need is another array n by m.

So, Need i, j equal to k, means P i may need at most k more instances of R j to complete

its task.

So, Need i, j is basically a derived matrix, so this is Max i, j minus Allocation i, j. So, the

maximum requirement for individual processes have been mentioned in the Max array

and Allocation is the current allocation for the processes. So, if you subtract this

Allocation from Max, so that gives the Need ok. So, Need is basically a what is the extra

amount of resources that the processes may ask for without releasing any further

resource, so that is the Need array.

(Refer Slide Time: 26:34)

Now, the safety algorithm; so it actually checks whether some allocation will be whether

the system is in safe state or unsafe state. So, it works with two temporary arrays, so

Work and Finish. So, Work and Finish they are vectors of length m and n. Initially Work

is equal to Available and Finish i is false for all the processes. So, if there are n processes

this the Finish array has got n entries in it, it is a Boolean array and it is all initialized to

false. And, the Work array, so this is an array of resources available for particular type.

So, this is Work is available Work is initialized to the currently available resources.

Now, what the algorithm does is that it is tries to find an i such that Finish i is false that

is the process is not yet finished, and the Need of the process i is less than the Work. So,

whatever is available. So, Work is the currently available one, so Need i with the need of

the process i is less than what is available in the working array Work.

Then, we can satisfy that particular process to completion. So, if no such i exists; that

means, there are two situation. One possibility is that Finish i is true for all the process

for all i. So, in that case all the processes have could be completed with the available

resources. So, the system is in a safe state.

Other possibility is that we could not find any process for which the second condition is

satisfied that is Need i less or equal or Work, so that condition could be satisfied. So, as a

result, so, that is also a situation, when there are there is a the system becomes unsafe

actually. So, if none of them are true, then we could find an i such that the process has

not yet been finished and its need is less than the currently available one currently

available resources.

So, in that case we update the Work array because we assume that this the whatever this

process needs so, that can be given from the Work array. So, accordingly this process

will be able to finish off and once the process finishes off, all the resources that are

currently allocated to process i becomes free. So, as a result my working array is

enhanced by having all those resources claimed back from the process.

So, this Work array is enhanced by this Work equal to Work plus Allocation i and Finish

i is set to true, so because this process is assumed to be finished. And, then it goes to step

2, it tries to find out another process of which can be finished now with this augmented

Work array. So, this way if we can find that all the processes can be finished with the

currently available work currently available set of resources in a particular sequence,

then we say that the entire system is in a safe state. Otherwise, the system is in unsafe

state and we have to avoid coming to an unsafe state.

So, we can utilize this safety algorithm to see like how this allocation decisions can be

made whenever a process makes a request for a resource. So, it is first this safety

algorithm will be run to see whether it can lead to a potential unsafe state and if we see

that it is not leading to an unsafe state the system will remain safe even after this

allocation is done, then only we will do that allocation. The resource allocation will be

done only at that time; otherwise the process the process has to wait for the process to be

free. So, we will continue with this in next class discussing on the allocation algorithm.

