
Operating System Fundamentals
Prof. Santanu Chattopadhyay

Department of Electronics and Electrical Communication Engineering
Indian Institute of Technology, Kharagpur

Lecture - 36

Synchronization Examples, Deadlock

(Refer Slide Time: 00:27)

So, next we will be looking into the dining philosophers problem so, the problem

statement is like this. So, we have got a set of philosophers say they are sitting on a table

and philosophers by nature they are in thinking state, but at some point of time they also

feel hungry. So, they are sitting on a dining table and they are trying to eat some food

and are simultaneously also continuing with the thinking process. So, all of a sudden

some philosopher while thinking may feel hungry and try to eat some food and after that

again goes into the thinking state.

So, this is basically modeling the situation where we have got processes and their

behavior unpredictable, like a process may be doing some computation which is

basically the thinking state of the philosopher and after some time the process may ask

for some resource ok. So, it tries to grab some resource and that is basically the

philosophers trying to eat and for eating the philosopher they need some spoons and it is

assumed that the food that is there on the table. So here it is a model may be some

amount of rice and the rice is such that the philosopher or any philosopher will need 2

spoons to eat the rice so or 2 chopsticks to eat the rice.

So, that is the thing so, we need 2 chopsticks. So, one philosopher to be able to eat must

grab 2 chopsticks, one on the left side, one on the right side and they are not snatching it

from a distant chopsticks. So, philosophers are well behaved so, they do not snatch it

from a for chopstick which is away from them. So, they just try to grab the chopstick to

the left or right. So, in the dining table the situation is like this that the food is there in

the middle and each philosopher has got a plate and between the plates we have got

chopsticks, so these are the chopsticks.

So, for this philosopher to be able to eat so must catch hold of both the chopsticks, but at

the same time they cannot take both the chopsticks simultaneously. So, they have to

request for chopsticks one after the other, maybe they first request of the left chopsticks,

then for the right chopstick. So, in terms of processes and resources so, we can think that

each chopstick is a resource and if a process requires 2 resources to for doing the next

phase of computation and the process has to request them separately. So, they cannot ask

for the 2 resources simultaneously.

So, this is the situation the overall problem statement is like this, that philosophers spend

their lives alternating, thinking and eating, they do not interact with their neighbors,

occasionally try to pick up 2 chopsticks one at a time to eat from the bowl and need both

to eat and then release both when done. So, that is the whole idea and in this particular

case we have got 5 philosophers. So, that is the shared data that we have is the bowl of

rice which is the data set and semaphore which is chopstick 5 so, these 5 chopsticks are

there. So, that they are modeled by 5 semaphores an array of 5 semaphores, all of them

initialize to 1 ok.

So, our so, bowl is not that much important for this from the sharing point of view,

because if a philosopher has got chopsticks though he can access the bowl. So, bowl

access is shared, so we do not need to do any protection there, but chopstick access is

mutually exclusive. So, once a philosopher has grabbed the chopsticks to his left and

right, the neighboring philosophers to the left and right of him, so cannot get any cannot

get those chopsticks. So, this is how we are going to model this particular problem.

 (Refer Slide Time: 04:22)

So, the structure of this philosopher i is like this. So, the philosopher will wait for

chopstick i, then it will wait for chopstick i plus 1 percent modulo 5. So, chopstick as

you as we; as I have said that chopstick 5 is an array of 5 semaphores all of them

initialized to 1. So, for any the ith philosopher coming so, if nobody else is trying to grab

the chopstick.

So, this philosopher will be able to grab the chopstick to the left and chopstick to the

right. Then proceed to the eating and after eating is over so, it in the philosopher will

release the chopsticks. So, it will signal chopstick i and signal chopstick i plus 1 modulo

5. Then the philosopher goes into the thinking state after some time the philosopher will

again come up. So, the philosopher will feel hungry again at that time again try to grab

the chopstick.

So, this is how this problem is modeled ok, so using semaphore so you can propose a

solution such that this ensures mutual exclusion. So, at no point of time one chopstick is

taken by more than one philosopher, so that the mutual exclusion is guaranteed. But of

course, there are other problems like it may so, happen that the first philosopher comes

up ok.

So, let us look into this diagram maybe this philosopher comes up grabs this particular

chopstick by executing that wait i instruction, then a chopstick i. Then before this

philosopher executes the next statement to grab this chopstick maybe this philosopher

has come up and has grabbed already grabbed this chopstick and before this philosopher

has grabbed this chopstick maybe this philosopher process has come up so, it has

grabbed this chopsticks.

So, it may so happen all philosophers they have all of they have grabbed their left

chopsticks and entries nobody is able to release the chopstick because chopstick release

comes only at this point. So, after grabbing the left chopstick all of them are stuck at the

right chopsticks. So, all the philosopher processes they are waiting at chopstick i plus 1

modulo 5, so at this statement. So, this makes the solution deadlock prone like it misses a

no philosopher can proceed. So, that is a situation of deadlock and that problem is there

in this particular solution ok.

(Refer Slide Time: 06:43)

So, the solution guarantees that no two neighbors are eating simultaneously so that is

guaranteed. There is a possibility of deadlock suppose that all philosophers become

hungry at the same time and each grabs the left chopsticks. So, that is the situation I was

talking about that there is a possibility of deadlock. So, what is the solution? So, there

can be several solutions here first solution is allow at most 4 philosophers to be sitting

simultaneously at the table. So, instead of 5 philosophers so, if we allow 4 philosophers.

So, maybe these philosopher is; this philosopher is not there so, but I have got 5

chopsticks on the table.

So, everything else remain same, but this chair is empty nobody is sitting here. Then

what will happen is that this philosopher will never face any problem in grabbing this

chopstick, similarly this philosopher will never face any problem with grabbing these

chopsticks. So, if I even if we take that all philosophers they have grabbed their left

chopstick. So, this fellow has taken this one, this philosopher has taken this one, this

philosopher has taken this one and this philosopher has taken this one, but at least this

philosopher will all be able to grab the right chopstick also ok.

So, that way this philosopher will finish off and then release both the chopsticks. So, one

then this chopstick will become available. So, then this philosopher will be having both

the chopsticks available with him so, he can proceed. So, that way the deadlock situation

can be broken. So, one solution to the deadlock problem here is to allow at most 4

philosophers to be sitting simultaneously.

Then second alternative is that allow a philosopher to pick up the forks only if both are

available. So, in the solution that we have suggested here the problem is that we were

trying to grab one chopstick at a time. So, if we say that no you cannot do like this so,

you have to either grab both of them or none of them. So, if I make this part of code a

critical section code. So, that if this philosopher is doing chopstick i pick up, so it though

no other philosopher will be able to do this chopstick i plus 1 pick up. So, that way this

philosopher we will be able to grab both the chopsticks so, that then the philosopher will

be able to proceed to eat.

So, this is another solution where a philosopher is allowed to pick up forks only both are

available and picking must be done in a critical section code. Also it is possible to have

an asymmetric solution, so this is an odd numbered philosopher picks up first the left

chopstick and then the right chopstick and the even numbered philosopher picks up the

right picks up the first the right one and then the left one.

So, coming to this solution, so if I number this philosopher, so this is philosopher this is

philosopher 1, 2, 3, 4 and 5. Now, this odd philosophers so, that is 1, 3 and 5 they pick

up their left chopstick first. So, this chopstick is picked up sorry this is the left chopstick.

So, this philosopher picks up this chopstick, similarly this philosopher picks up know

this philosopher picks up the left chopstick and this philosopher picks up the left

chopstick, they try to grab the left chopstick first.

Now, at that time if this, on the other hand this even numbered one that is 2 and 4 they

will try to grab the right chopstick first. So, in the execution of 2 so, this 2 will try to

grab this chopstick first and 4 will try to grab this chopstick first the right chopstick. As a

result so, there is no contention for this chopstick ok. So, it cannot happen that this

philosopher has grabbed this chopstick and asking for this, that is not possible.

So, naturally when this philosopher is asking for say this chopstick, so this one is free.

So, I can; so this philosopher will be able to grab this chopstick and continue. So, this

way we can have some asymmetric solution and that asymmetric solution will ensure

that there will be no deadlock in the system.

So, this way we can have this variants of this dining philosophers problem using an

asymmetric solution that odd numbered philosopher picks up the left chopstick and then

the right chopstick and even numbered philosophers picks up the first the right chopstick

and then the left chopstick. So, this is one possible solution.

(Refer Slide Time: 11:42)

So, in this particular section or particular set of lecture, so we have seen some examples

on this synchronization problems. Semaphore and monitor based schemes we have

discussed so, they will be monitor based solutions can also be there for this dining

philosophers problem or reader-writers problem. So, in our previous classes we have

taken the some monitor based solutions.

So, if you can look into any textbook for monitor based solution for this dining

philosophers problem there. And so, with that we end this portion of code of this portion

of this synchronization problem solutions, next will be taking up another very important

discussion that is on the issue of deadlock.

So, deadlock happens to be a fundamental problem in a operating system, because now

there are multiple processes and those multiple processes they are executing

simultaneously, at they are executing concurrently and then they are requesting for some

resource and they releasing some resource at some point of time.

Now, it can very well happen that the processes they are waiting for some resource

which are already grabbed by some other process and those other processes they are

again waiting for some resource which is grabbed by these processes. Overall the system

in the system I have got a set of processes which are interdependent on each other in

terms of resources and such that one process is requesting for a resource is grabbed by

the other process and that other process is requesting for some resource which is grabbed

by this process. So, that way none of the processes can continue.

So, this type of situation, so they are known as deadlock situation and if there is a

deadlock in the system then the system throughput will be very low, even if you have got

large number of processes in the system which we call the degree of multi programming,

even if degree of multi programming is high you will find that the none of the processes

are completing because of this deadlock situation. So, that will bring the system

throughput to a low value and this waiting time and also they will be going up.

(Refer Slide Time: 13:57)

So, in this particular portion of our lecture, so we will be looking into this concept of

deadlock and the concepts that we will covered we will start with the system model like

how do you visualize the overall system from the perspective of this resource and

deadlock these issues.

How do you characterize the deadlock, so how do you, what are the properties of this

deadlock, then how can we handle deadlock, so that is very important. Then we will see

some methods for prevention of deadlock, avoidance of deadlock and detection of

deadlock like any other disease that we have.

So, in our in human being also we can treat it in three different ways, we can have some

preventive measure, we can have some vaccination for example, so, that will prevent

those diseases. We can do some avoidance like if we know that the certain part of the

world is affected by some disease, so we do not go to that part of the world so, that is the

avoidance policy.

And the detection that is the final one; so you can have some test and see whether we

have been infected by that disease and if there is a detection and then we have to cure

that disease by taking medicines or whatever. So, similarly in a system also so, we can

have these three case or policies for handling this deadlock situation, we can prevent the

deadlock by ensuring the case that we it will never create any deadlock, we can avoid,

we can adhere to some policy so, that deadlock will never occur.

Then we may try to avoid the deadlock so, we may try to take steps. So, that we do not

take any allocation resource allocation, that may eventually lead to deadlock. So, those

possibilities are cut down at the very beginning. So, we do not make the system to go

from one state to another such that it finally, may go to deadlock state. So, what I mean

is that, at any point of time you can take a system state to be the set of processes and

resources that are there in the system so, that is the; that is one state.

And from this it can go to a new state when some process is allocated some resource or

some process releases some resource. So, that way for the entire system you can think

that it goes through via several transitions. Now, it may so happen that if I do this

allocation then eventually it may lead to a deadlocked state for the whole system. So, we

do not do this allocation at all, so this branch is totally cut off ok. So, apprehending that

there that this will lead to a deadlock situation, so we do not go into that part at all so that

is the avoidance policy.

And detection is of course, there so, you can run some health checking algorithm that

will see whether there is any deadlock in the system and if the deadlock is there, it will

try to recover from the deadlock situation. So, the deadlock detection and followed by

recovery from deadlock, so these are there. So, we will look into these concepts one by

one.

(Refer Slide Time: 17:06)

So, objective is to develop a description of deadlocks, which prevent sets of concurrent

processes from completing their tasks. So, we have to we will discuss about the

deadlocks, to present a number of different methods for preventing or avoiding

deadlocks in a computer system. So, how can we prevent deadlock, how can we avoid

deadlock or how can we detect deadlock and recover. So, all these things will be

discussed.

(Refer Slide Time: 17:31)

A typical example of deadlock is a traffic gridlock, suppose we have got a set of roads

like this and the cars are going like this. Now you see this particular car it cannot proceed

because there is a car standing here and it cannot go this way. So, all these; this road has

got a number of cars. So, this dot means these there are cars in front of this also, so this

cannot proceed.

Now, this fellow can proceed only if this car moves so, if this car moves then this one

can proceed, but for this car to move, so I will need to have some previous car cleared.

Similarly say this one what is happening is that say this car so, this car can move if this is

free so, but if this is free then in that case I have to have; so this part this road available

so, this is also stuck here, because this is not progressing.

Similarly, this is not progressing because this road is stuck and again this is so, for this

road to be free. So, this car is blocking it and this car cannot proceed because there is a

blockage here. So, as a result there is a circular blockage in the grid, so none of the cars

are progressing. So, this situation is a typical situation that occurs in the traffic line.

(Refer Slide Time: 18:55)

So, similar case can occur in computer system also when the processes they are waiting

for resources to be free, and the resources are currently held by some other processes. So,

the system model that will consider it consist of resources so, we have got resource types

R 1, R 2 up to R m, so we have got say m different types of resource. So, R 1 may be

CPU cycle, R 2 may be memory, space R m maybe some I O device etcetera and each

resource type R i has W i instances.

So, maybe in my system I have got three printers. So, if R i is equal to printer, then W i

is equal to 3. So, how many instances of a particular resource type we have? So, that is

W i, and each process utilizes resources in this sequence first it will request for the

resource, if the resource is available then it will be told that yes the resource is available,

then it will use the resource and after using the resource it will release the resource, so

this is how this system model works.

So, any process willing to get a resource so, it will send a request and this operating

system will grant permission and then only it will use it and then it will release it by

informing the operating system that I am done you take back the resource from me ok.

So, this resource, request, use, release so, this will be followed for all the processes.

(Refer Slide Time: 20:19)

A typical example maybe even that we have got some mutex locks. So, two mutex locks

are created here so, pthread mutex t first mutex and pthread mutex to second mutex. So,

we have got two mutex locks and these two mutex locks are initialized here. So, they are

both of them are initialized to NULL ok. Now, there are two threads thread one and

thread two are created and both these threads have access to both the mutex locks, so

they can access both the mutex locks.

(Refer Slide Time: 20:51)

Now, say the first one so, it does it like this, thread one runs in this function so, do work

one. So, pthread mutex lock it is trying to lock the first mutex and then pthread mutex

lock then it is trying to lock the second mutex, then it will do some work, then it will

unlock the second mutex and then it will unlock the first mutex then it exits.

On the other hand this second thread so, it does it like this. So, it first puts a lock on the

second mutex and then it puts a lock on the first mutex, then it will do some work and

then it will be unlocking this first mutex and then unlock the second mutex. Now, you

see the typical problem that can come is like this; the typical problem that can come is

like this.

So, the first thread executes the first statement as a result it has locked the first mutex.

And now suppose this thread swaps out because each thread is given some fixed amount

of time for execution the time slice expires and this thread is taken out of CPU and the

other thread executes; and other thread executes the first statement, so pthread mutex

lock second mutex. So, it has set a lock on the second mutex.

Now, the first thread again comes and it tries to put a lock on the second mutex, but it

will not be successful because this lock is already put by the second thread ok. So, this is

not successful, so it is stuck here. On the other hand after some time if this thread is

scheduled, so this thread will now try to put a lock on the first mutex and the first mutex

is already locked by the first thread. So, as a result the second thread also gets blocked at

this point. So, now, the situation is that the first thread it is waiting for a thread which is

currently locked by the second thread and the second thread is currently waiting to put a

waiting for a lock on the first mutex which is currently locked by the first thread.

So, we have got a mutual waiting. So, we can say that this is waiting for this one. So,

basically this is waiting for this one and this is waiting for this one. So, this situation

occurs so, both the threads will get stuck at this point. So, this is a deadlock situation so,

because none of the threads can proceed and basically the only way out to solve this

problem is to either kill one of the threads or we have to reset the system. So, that it starts

from the beginning altogether. So, whatever be the case so that is that the situation is not

desirable ok. So, we have to do something so that this deadlock can be handled.

(Refer Slide Time: 23:45)

And if you try to see what are the properties that a deadlock situation must satisfy is that,

if it requires that the following four conditions they must be held simultaneously and we

can argue that if any of these conditions is not satisfied at one point of time then

deadlock cannot be there. So, violating any of them will ensure that there is no deadlock

in the system.

So, I have to prove that a system is not deadlocked what you have to do is that we have

to show that; so at least one of these properties is violated ok. The first condition and if

you want to if you can show that all the four conditions can potentially hold then there is

a potential chance of a deadlock occurrence. Though holding all this condition does not

mean that there will always be a deadlock, but these are these conditions are necessary

for deadlock to occur.

So, first one is the mutual exclusion, so only one process at a time can use a resource. So,

if this mutual exclusion can be violated then of course, deadlock cannot occur, because if

a resource is such that multiple processes can access the use the resource simultaneously

like say the screen of the computer. So, this screen multiple processes can write

simultaneously onto the screen, but think about the printer. So, printer if it is given to one

process and that process is writing on to the printer, we cannot allow other process is to

write onto the printer. So, that way it is a mutually exclusive access as far as the printer

is concerned.

So, if the mutual exclusion is not there then no process has to wait for the other process.

So, even if the other process is holding the screen resource, then the other this process

need not wait, because it can also write onto the screen simultaneously, so mutual

exclusion is not required. So, if mutual exclusion is not required to be satisfied, then

deadlock cannot occurred. Second thing is the hold and wait a process holding at least

one resource is waiting to acquire additional resources held by other processes.

So, if the process is not holding any resource and it is asking for some resource, then no

other process can wait for this process to be over. So, what we mean is that, suppose I

have got the process P 1 and a process P 2. So, process P 2 is currently holding the

resources R 1 and R 2, but process P 1 is not holding any resource. Now, if process P 1

asks for a resource say R 3, so that cannot cause any harm because it is so, even if this

process P 2 is also holding R 3.

So, I can say let P 2 finish off and when P 2 will finish off then this R 3 will be available

and then it will be given to P 1. So, it is basically a scheduler decision policy, but the

system is not deadlocked. So, it is not the case that P 1 and P 2 they are stuck

simultaneously. So, this hold and wait condition if it is violated then also this deadlock

cannot occur.

Then there is a third condition, which is said no preemption, a resource can be released

only voluntarily by the process holding it after that process has completed it is task. So, it

is like this some of the resources that we have so, they are preemptable in nature, some

of them are non preemptable in nature for example, if you take the CPU time ok. So,

CPU is given to a process for some time, so if you find that another process needs the

CPU and you need to allocate the CPU to that process. So, you can preempt the currently

running process from the CPU and give it to the second process.

Similarly, if it is a main memory, then what you can do? You can make the main

memory free by writing that main memory content on to some disk space and later on

when required. So, you can copy back from the disk to the main memory.

(Refer Slide Time: 28:11)

So, this no preemption so, if this condition is violated so, if you can preempt a source

then also you need not wait like say process 1 is holding a resource R 1; so, it is holding

a resource R 1 and P 2 is holding a resource R 2.

Now, if you find that process 1 is requesting for R 2 also and it should be, it has to be

granted then if R 2 is a preemptive resource say CPU (Refer Time: 28:26), CPU or main

memory etcetera, then you can take back R 2 form P 2 and give it to P 1, then P 1 will

have both R 1 and R 2 available. So, P 1 can finish off and after P 1 finishes this R 2 may

be given back to P 2 so, that P 2 will finish. So, as a result there cannot be any deadlock.

So, this is the no preemption condition.

Next we have got circular wait, so circular wait is telling that I have got a number of

waiting processes P 0, P 1 up to P n they are waiting the such that P 0 is waiting for a

resource that is held by P 1; P 1 is waiting for a resource held by P 2, etcetera up to P n

minus 1 is waiting for a resource that is held by P n and P n is waiting for a resource held

by P 0.

(Refer Slide Time: 29:18)

So, it is like this that P 0 is waiting for so, P 0 is waiting for some resource. So, if this is

the process P 0 it is asking for some resource R 0 it is the holding it is asking for some

resource R 0 and R 0 is currently held by process P 1, then process P 1 is requesting for a

resource R 1 and this R 1 is currently held by process P 2.

So, this way it goes on maybe process P 2 is requesting for some resource R n and this R

n is currently held by P 0. So, this type of situation if it is there then you can understand

that none of the processes P 0, P 1, P 2 they can proceed. So, they can, so none of them

will be able to proceed because all of them are waiting in a circular fashion on some

process to be over and get the corresponding resource and if proceed.

So, if the circular wait condition is there then also will have deadlock. So, if you can

violate any of these conditions see the circular wait is not there then of course, there is no

problem. For example, if this chain was not there then what we can understand is that P

2; so P 0 is requesting for R 0 or say this is requesting for R n.

So, I can give R n to P 2; so P 2 will finish off and once P 2 finish off this R 1 R n and R

1 and R n are free then R 1 can be given to P 1. So, P 1 will finish off and then R 0 can

be given to P 0 for P 0 to complete. So, if there is no circular wait if it is only a chain of

waits way of the processes then they can be satisfied very easily. So, then all that also

help us in avoiding this deadlock condition, so deadlock will not occur in that situation

also. So, we will continue with this deadlock characterization and solution in the next

class.

