
 Operating System Fundamentals
Prof. Santanu Chattopadhyay

Department of Electronics and Electrical Communication Engineering
Indian Institute of Technology, Kharagpur

Lecture - 29

Process Synchronization

The next important concept in the field of Operating System that we are going to see is

Process Synchronization. So, far we have seen that in a computer system we can have

several processes that reside in the ready state and depending upon the scheduling policy,

so they are scheduled in certain fashion. So, it can very well happen that the processes

are scheduled round robin fashion. And when it is done the process might have executed

a few statements and after that it has got descheduled, another process has got scheduled

and that is there now running.

Now, between this process 1 and process 2 that I am talking about, there may be some

shared resources. So, that shared resource if it is not protected properly, so we have to be

there may be some problem. So, how this can be done? A typical example can be like

this like say, there is a printer attached to a system, so one process is running so it is the

printing something on to the printer. Now your second process comes and that also tries

to write something on to the printer. Now how do you control the situation?

Because once the printer is allocated to process 1 so, it cannot be given to process 2 at

the same time process 1 was running, so at that time a priority process 2 has arrived. So,

that has got that has to be given the CPU. So, how to take care of this thing? So, we have

got the issue of synchronization. So, another important example maybe like this that ok,

there are in a banking system so there are different bank accounts and there are

transactions that are going on simultaneously.

Now, if two transactions they try to modify same account simultaneously, then that may

lead to some difficult situation some critical problem may come up about the consistency

of the whole database. So, that way the transaction has to be controlled that in some

sense. So, transactions are ultimately converted into processes. So, the process

synchronization becomes an important issue. So, in this particular discussion, so we will

be looking into how this synchronization is done and what are the different primitives by

which we can do this process synchronization?

(Refer Slide Time: 02:38)

The concepts that we are going to cover are like this, apart from the background that

discussions that we will have on this. So, we will be discussing about the critical section

problem. So, critical section is basically a portion of code at which these some shared

resources is being accessed. So, maybe I have written a 500 line program and in that in

some only in 10 lines, so it is accessing some shared resource.

So, when I am trying to tell that this process should run very carefully. So, I am basically

bothered about those 10 line because when the process is executing those 10 lines, it

should not happen that the process is taken back the CPU is taken back from the process

and all so something like that. So, that becomes a critical section, then there are several

solutions to the critical section problem one of them is known as Peterson’s solution,

then there are some synchronization hardware.

So, this architecture people so they try to come up with some solution to this critical

section problem. So, that they provide some mechanism by which this critical section

problem can be solved. And, they are basically some hardware solutions that are

provided. Then there are Mutex locks which is mutual exclusion locks then semaphores

and other alternative approaches. So, these are the things that we are going to see in this

particular chapter.

(Refer Slide Time: 04:08)

So, looking into the objectives, so first we will present the concept of process

synchronization, then we will introduce the critical section problem and solution can be

used to ensure the consistency of shared data. So in a program, wherever you are

accessing some share data so that becomes a critical section because of some reason that

we will explain. Then to present both software and hardware solutions for the critical

section problem, we examine several classical process synchronization problem. So, this

classical process synchronization problem one of them we have already seen, which is

the producer consumer problem that we have discussed previously.

But there of course, we did not consider the situation where the producer and consumer,

they are accessing the shared buffer and the buffer may be modified by both of them

simultaneously. So, that way it may create some difficulty or there are if there are

multiple producers and multiple consumers then they the multiple producers may try to

write on to the same location or multiple consumers may try to read from the same

location.

So, that way we have got this the classical process synchronization problems. And many

of the real problems that you find in computer systems, so they can be mapped to one of

these classical problem. And once this mapping can be done, so we can take help of the

solutions to solve those problems. And then we explore several tools that are used to

solve process synchronization problems so that we will do.

(Refer Slide Time: 05:44)

Now, what is synchronization? So, concurrent access to shared data may result in data

inconsistency.

(Refer Slide Time: 06:00)

So, I will take an example and try to explain with respect to that. Say, suppose we have

got in a bank, so we have got an account A. So, you have got a account A and account B;

account A was initially having say 1000 rupees in it and account B was also having 1000

rupees in it. So, total amount is say is equal to 2000.

Now, there are two transactions T 1 and T 2. So, in transaction T 1 what we do? We

transfer 100 rupees from account A to account B. So, what it tries to do this operation is

A equal to A minus 100; and B equal to B plus 100. And transaction two so, it is

transferring say 50 rupees from account A to account B. So, it is A equal to A minus 50;

and B equal to B plus 50. Now if these two transactions occur in a particular sequence,

that is T 1 followed by T 2 in that case the total sum after doing this transfer after

executing these transactions, will be equal to 2000 because account A will be reduced by

150 rupees and account B will be credited with 150 rupees.

So, that way T 1 to T 2 if it is T 1 after T 2 then the amount is 2000. And similarly if it is

T 2 after T 1 so then also the amount is the final amount is equal to 2000 the sum of the

two accounts. Because in this case first 50 rupees will be transferred from A to B and

then 100 rupees will be transfer from A to B.

Now, you see that in computer system when they are executed. So, they are not executed

like this, but they are converted into some process and the process is executed. So,

assuming that I have got registers R 1 and R 2 in the computer. So, the operation that is

done is MOV R 1 comma A subtract R 1 comma 100 then MOV A comma R 1 then

MOV R 2 comma B, then ADD R 2 comma 100 and then MOV B comma R 2.

So, this is the set of operations if we will look in terms of a process. So, these are the

instructions to be executed for doing this operation. Similarly so this piece of this

transaction, so it will give rise to a piece of code like this MOV R 1 comma A, then

subtract R 1 comma 50 then MOV A comma R 1 then, MOV R 2 comma B then ADD R

2 comma 50 and then MOV B comma R 2.

Now, if this code is executed properly then there is no problem because if it is scheduled

at first T 1 then, T 2 or first T 2 then T 1 then there is no problem. But in a time shared

system what can happen is that maybe we start with T 1, so T 1 executes up to say this

much, up to this much and then it gets descheduled. So, at this point of time, so what is

the content of R 1? So, R 1 equal to first it got 1000 here and then subtraction has taken

place, so R 1 has become equal to 900, but before saving this value. So, it got de

scheduled now say T 2 came and T 2 it started executing and it executed say up to this

much ok. So, if it had executed up to this much. So, you see when it does MOV R 1

comma A, so A value is still equal to 1000 ok.

So, A at this point also A is remaining equal to 1000. So, when it is accessing R 1

comma A, so R 1 comma 1000. So, 50 substituted to 950 then MOV A comma R 1, so,

A gets the value 950 fine. Now after that suppose T 1 comes so T 2 gets de scheduled at

this point T 1 comes into execution and so T 1’s context is restored. So, R 1 gets back its

old value of 900 and then MOV A comma R 1. So, this starts with this statement as a

result the value of A becomes equal to 900.

So, this 950 value that was there so, that is over written now and this gives the value 900.

After that suppose that this part of the code executes property so it started with this point

and the next descheduling occurs only at the end of the code. As a result B will be

getting the value equal to. So, 100 will be added so B will get the value 1100. So, what is

the sum after doing this set of transfer? So, this is this is 900, so this is equal to 900 plus

1100 so this is equal to so, this becomes equal to 2000 ok.

Now what about this statement? So, this statement so this will be coming now; and then

R 2 comma B so B will be getting the value of. So, at this point T 1 has ended and this is

the situation. Now T 2 will come back So, T 2 will come to this point and T 2 starts

executing. So, R 2 gets the value equal to 1000 and then add 50; so, plus 50 so this is

1050. And then this value will B saved in B, so B will finally, get 1050. So, when so this

was the situation when T 1 has finished, but T 2 was half way. So, when T 2 was also

finished now the value of A is equal to 900; value of A is equal to 900 and value of B is

equal to 1050 fine.

So, what is the total now? So, total is equal to 1 1950 ok. So, why this thing has

happened? This thing has happened because when a T 1 was accessing the value of a in

between T 2 came and it got some inconsistent value of A and with that it is preceded.

So, as a result so the final content of A plus B becomes equal to 1950. Whereas, in a

proper execution if T 1 was executed completely before T 2 or T 2 was executed

completely before T 1 the sum should have been 2000, so there is an inconsistency here

ok.

So, if you think about descheduling of T 1 at many other points also. So, you can find

that you are getting some different-different results for the sum of the two account. So,

that is that is undesirable because what we expect is if both of them are executed

properly, both the transactions are executed properly then I should do the total amount of

sun should remain 2000 only. So, this is the problem of concurrency.

(Refer Slide Time: 17:21)

So, we will see that how this can be solved. So, this concurrent access of shared data

may result in data inconsistency. So, that point is understood and maintaining this data

consistency it requires mechanisms to ensure orderly execution of operating processes.

So, if one possibility in the previous example is that somehow we ensure that T 1 is

executed completely before T 2 or T 2 is executed completely before T 1 so that is one

thing.

Or, when T 1 is accessing A T 2 should not be allowed to access A and when T 1 is

accessing B T 2 should not be allowed to access B or vice versa when T 2 is accessing A

T 1 should not allowed. So, whenever some shared access is taking place some other

process should not be able to access that a resource, until and unless this is done by the

first process. So, maintaining data consistency it requires mechanism to ensure orderly

execution of cooperating processes the synchronization mechanism is usually provided

by both hardware and operating system.

So, we will see some mechanism by which this synchronization may be done by

hardware or by the operating system. So, this producer consumer problem that we have

discussed previously, so that is there so all this discussions will have. So, we will assume

that machine instructions they are atomic. So, this load store instructions are atomic. So,

you when the content is being loaded from CPU like by the statements we had previously

like MOV A comma R 1 or say R 1 comma A which is a load instruction. And value of

A comes to R 1 or the instruction like MOV A comma A comma R 1, when R 1 is the

value is being stored in A.

So, this is a load and store instructions, so this is basically a load type instruction this is

basically a store type instruction. So, we assume that this is atomic, so you can you

cannot stop the execution in between ok. So, if you look into any computer architecture

you will find that, so when a when a processor is executing instructions; then to stop it in

between or to deschedule the process etcetera what we have to do is that we have to send

some sort of interrupt.

So, that interrupt may be generated by a timer or maybe from some IO device or

whatever. So, that interrupt is generated, but whenever this interrupt occurs so if

processor is currently executing an instruction. So, if the interrupt occurs anytime in

between so the first thing that it does the processor does is it completes the current

instruction. And, then it may from this point it may branch to some I interrupt service

routine, but it is not that as soon as the interrupt has occurred it will immediately branch

to ISR. So, maybe the processor was executing this MOV R 1 comma A instruction and

somewhere in between the interrupt has occurred.

So, the processor will finish this instruction and then go to the ISR it is not that it will go

in between. So, that is the that assumption is there. So, any architecture book that will

find or any microprocessor where book that you find, we will see that this atomicity is

maintained. For example, in case of 8085 processor you may find out that the interrupt

occurrence is checked at the last, but one clock cycle of every instruction execution.

So, that after it is the last, but one clock cycle the interrupt conditions are checked and if

the interrupt is there, then after finishing the next clock cycle only so it will be going into

the interrupt service routine. So, execution of a single instruction cannot be stopped in

between. So, it will always go on to the end and then only it can be the processor can

branch to some interrupt service routine.

So, this is the basic assumption that load and store instructions they are atomic in nature.

So, you cannot wait the execution in between, so you cannot say that this instruction is

half done. Whereas if whenever you have got a sequence of instructions, so if I have got

a sequence of instructions, then after executing two instruction. So, there can be an

interrupt and then the processes switches to some other process that can happen.

But it cannot be that it has executed up to this much and then the interrupt has occurred

and it came out of execution from this point itself so that does not happen. So, we will

look into this as we proceed so, we will see the techniques for we will see the techniques

for doing this synchronization.

(Refer Slide Time: 19:10)

The first problem that will be looking into is the that we have got this producer consumer

problem. So, this is a producer consumer problem that we have already seen a solution in

the previous chapter, but it can only use buffer size minus 1 element. So, buffer is never

full, so that is at least 1 element that is area that is filled. The methodology used to allow

only a single process to increment or decrement a particular shared variable.

So, this was the technique that that was followed. So, only one process can increment or

decrement the shared variable. There is a solution that fills all the buffers using the same

methodology the producer process instruments the value on the variable in, but not out.

And the consumer process implements the value of the variable out and, but not in. So,

that way this solution can be done, but the solution becomes pretty complex. So, if you

can you can try out this process, but this becomes pretty complex.

(Refer Slide Time: 20:14)

So, using this synchronization problem, so we will see that there can be better solution

for these producer consumer problems. A typical example is typical problems that can

occur is like this, suppose we wanted to provide a solution that fills all buffers that we

allow the producer and consumer processes to increment and decrement the same

variable.

So, we can do this by having another integer variable counter. So, this counter variable it

keeps track of the number of full buffers how many buffer areas are free? So, initially

counter is set to 0 and the variable counter is incremented by producer after it produces a

new buffer and decremented after the consumer consumes a new buffer. So, this counter

value at any point of time it holds the number of elements that are filled in the buffer.

(Refer Slide Time: 21:11)

So, initially the value is 0 as the producer is producing further items so, counter value is

incremented and as the consumer is consuming some item the counter value is

decremented so that is the situation. So, this is the producer process. So, produce an item

in next producers. So, and then while counter equal to buffer size then of course, you

cannot do anything. Then otherwise, so when the buffer is free when the counter is not

equal to buffer size, so in that case the next produced item is put into the buffer then the

in pointer is incremented by in plus 1 percent buffer size and then counter is incremented

by 1, so counter equal to counter plus 1.

(Refer Slide Time: 21:38)

On the other hand the consumer process, so it checks for the counter value to be equal to

0 and if it finds that the counter value is equal to 0, then there is nothing in the in the

buffer. So, the counter the consumer process will wait. Then from the out position, so, it

will read the next item to be consumed. So, next consumed equal to buffer out, then out

pointer will be implemented and the count value will be decremented. So, this is the very

standard solution that we can have for solving this producer consumer problem.

(Refer Slide Time: 22:12)

But there is an issue, just like that problem that we had previously when we had this two

bank accounts and two transactions trying to access those accounts simultaneously. So,

here also you see there in this in this producer and consumer processes what is happening

is that this counter variable, so that is shared between the producer and the consumer.

So, producer is trying to implement it, consumer is trying to decrement it. And if this

thing happens in an uncontrolled fashion, then it can lead to some inconstant value in the

counter; so that we are trying to see. Suppose this counter equal to counter plus 1 and

assuming that the underlying processor it does not have the increment memory

instruction. So, some processor may so counter is ultimately a memory location, so if I

can directly have an statement like as so some processor. If it has some increment some

memory address, increment some memory address so then that instruction can be used

for implementing this counter.

So, counter address can be given here and this increment counter will be working there.

So, for that type of processors this discussion is not valid. So, we assuming that we do

not have this memory address as the operand of the implement instruction. So, all the

arithmetic logic and so many processors we will find that all arithmetic logic operations

are in the CPU registers only. So, they are commonly known as load store architecture

and most of the processors that we have now many of them they have got this load store

architecture.

So, in load store architecture, what it means is that all the arithmetic logic operations

arithmetic and logic operations, so their operands must be in the CPU registers, so

operant are CPU registers. So, if you want to do some increment operation then what you

have to do is that first we have to load the counter value into some register. Then the

register value has to be incremented and then the value of the register should be stored

back into the counter. On the other hand if you are trying to do say counter equal to

counter minus 1.

So, this has to be done like this may be some other registers register 2 is loaded with the

counter value it is decremented and the value stored in the counter location. So, this is

our two system and suppose the sequence of operation happens like this. So, initially the

count value was equal to 5, the counter value was equal to 5 and; that means, the buffer

had 5 locations full, so this 5 locations were full. Now suppose producer produced the

next item as a result it is so it executes so it produced next item.

So, naturally so it try to increment this counter value. So, it executes the statement

register equal to counter register 1 equal to counter. So, register 1 is equal to 5 then

producer executes the next statement register 1 equal to register 1 plus 1, so register 1

gets equal to 6, but after executing this two statements the producer process got

descheduled at this point. Now, the consumer process came and the consumer process

started executing from this point. So, register two equal to counter. So, register 2 gets the

counter value which was equal to 5. So, you see though the register 1 value has been

upgraded to 6 it is not yet reflected in the counter.

So, the counter value remains at 5, so register 2 equal to counter so, register 2 gets the

value 5. Then register 2 is decremented by 1 so, register 2 value becomes equal to 4. And

now suppose the consumer get descheduled after executing these two statements, that the

count the consumer gets descheduled and the producer process comes back. And, when

the producer process comes back, it starts executing from this point so it says counter

equal to register 1. So, as a result counter get the value 6. And, after that this register this

producer is over. So, the consumer comes back a consumer executes the last statement

that was pending here counter equal to register 2.

So, counter register 2 value was 4 so counter gets the value 4. Whereas what has

happened is this after this count the counter value was equal to 5, one more item has

been produced, but at the same time one item has been consumed by the consumer. So,

the counter value should remain at 5, but due to this scheduling in some intermittent

fashion intermittent all that the process is getting descheduled in some intermittent

fashion this counter value has got some inconsistent result. So, this counter value has

become equal to 4 which is not the correct one. So, this is as if the two processors they

are contending between each other, they are racing between each other to update the

shared variable. So, this is a very common phenomena that you can find across a number

of processes in a computer system, whenever they are trying to use some shared

resource.

And, as you know that this was whenever we have got this threads are running parallelly.

So, threads they one thread modifying some variable in the data segments, so all other

threads will also see the effects as a result. So, there is a race among the threads.

Similarly, there if the at the process level, so if the processes they have got some shared

variable created in the shared memory then there will be race across the processes to

update that shared memory location. So, this update this race condition is very common

and this race condition has to be solved carefully. And unfortunately the OS designer

cannot do much about this thing because ultimately this programs this processes are

developed by users.

So, users must be knowledgeable like how can I do this synchronization? So, operating

system will provide mechanism by which this synchronization can be done, but their

proper utilization the responsibility lies with the system users ok. So, as a system level

programmer I should be able to do the write my program in some synchronized fashion.

And, whenever I am writing parallel program, so it is expected that I have got enough

understanding and enough maturity that this I can figure out where this race conditions

can take place. And accordingly take a decision and try to solve this race condition

properly.

(Refer Slide Time: 29:13)

So, if we so, for solving this race condition, so we have got this situation like how do we

solve this race condition? So, basically what we need to do is that the execution of this

counter equal to counter plus 1, it has to be done as an atomic operation. So, it is not that

I can do it so it should not be interrupted. In between that is while it is being executed no

other instruction can be executed concurrently. Actually no other instruction can access

the counter.

So, this has to be done similarly for this counter equal to counter minus 1, we have to

have the facility that no other instruction is accessing this counter simultaneously. The

ability to execute an instruction or a number of instruction atomically is crucial for being

able to solve many of the synchronization problem. So, almost always you will find that

this ability is required we want to have a piece of code that can be executed in an non-

interrupted fashion so a atomic.

So, we will see in our next class how this atomicity can be ensured across these

executions.

