
Operating System Fundamentals
Prof. Santanu Chattopadhyay

Department of Electronics and Electrical Communication Engineering
Indian Institute of Technology, Kharagpur

Lecture - 21

Threads (Contd.)

(Refer Slide Time: 00:29)

So, here we have got a typical example of this concurrency versus parallelism. So, if you

have got a single core system, then this tasks T 1 T 2 T 3 and T 4. So, these are various

tasks that we have in the system and over the time the scheduler schedules the tasks in

this fashion that first it schedules T 1 for some time quantum, after that it schedules T 2

for some time, then T 3 for some time, then T 4 for sometime then again it picks up T 1

for execution. So, this type of execution we will see later. So, this is known as round

robin type of scheduling. So, each task is given CPU for some small amount of time.

So, this is a concurrent situation because all the tasks so, they are progressing. So, if we

look into the task at some point of time. So, all the tasks so, you will see that T 1 has

progressed to some extent, T 2 has also progressed to some extent, T 3 also progressed to

some extent so, like that may be the amount of progress is not uniform across all the

tasks, but all of them are progressing. It is not that T 1 is a executing and all of them

have not. So, T 1 is just finished and none of the others they could executive in some

small fraction. So, that will not be the situation. So this way the schedule or it can be

used to have concurrency in a single core system; on a multi core system so, we have got

say 2 cores core 1 and core 2, now the job of the scheduler is more complex. So, it has to

decide not only with job to execute next, but on to which core. So there are issues in this

multi core scheduler design.

So, for a typical case may be like this that in core 1 it first it on core 1 it puts the odd

number jobs and on core 2 it puts the even number job. So, this is a totally hypothetical

decision that the scheduler has taken. So, this T 1 is run for sometime then it is given to

T 3, then T 3 runs for sometime then again given to T 1 so, it goes like this and similarly

for core 2, first T 2 runs for sometime then T 4 for some time. Now further it is a good or

bad distribution of this task 2 core so, that is that can only be answered when we see the

total finish time for all the tasks which constitute the whole application for this.

So, it may so, happened that we need to take a much better decision and this may be turn

out to be a very bad decision because T 2 and T 4 those tasks may be quite small

compared to T 1 and T 3. So, as a result this second core will remain idle for a good

amount of time and that has to be reduced. So, if we are trying to optimize the

performance. So, this parallelism we get parallelism in here because this T 1 and T 2

they are progressing parallel T 3, T 4 they are progressing parallel and we also have

concurrency because at any point of time all the tasks. So, they have executed up to some

point. So, that way you have got both parallelism and concurrency in multi core system.

(Refer Slide Time: 03:33)

Now, if we increase the number of cores then how does this performance improve ok.

So, this is so, we ideally we would like to have a situation like if I instead of using 1

core. So, if I use 2 cores then my performance so, throughput should be and double of

the previous 1 because per unit time I can do 2 jobs which can be which is possible by a

single processor. So, that way that is the expectation, but unfortunately if you look into

any program then entire part of it cannot be done parallel, because there will be some

part of it which is inherently sequential. So, you cannot do any parallelization of that and

there is some portion which are which can be paralyzed.

So, only the portions which can paralyzed so, they can be given to this parallel jobs,

parallel cores and that way you can get performance improvement. So, this is the

Amdahl’s law, it says that identifies performance gains from adding additional cores to

an application that has both serial and parallel components. So, if job with a task can

have an application can have both serial and parallel components because initially it may

be doing some operations and only when it comes to some sort of say array up dation and

all for i equal to 1 to 1000. So, ai equal to bi plus ci.

So, something like this. So, then I have got parallelism, but also as long as it is doing

operations like say x equal to y plus z then p equal to x into k so, like that. So, I cannot

have parallelism because this is the x value. So, these two statements cannot be executed

in parallel because this x is just computed here. So, I cannot do them in parallel. So this

way some part of the core inherently sequential say you cannot do parallelization and

there are some parts of the cores of which can be very easily parallelized. So, this

Amdahl’s law says that if I have got N processing cores and S is the serial portion then

the speed up will be less or equal 1 upon S plus 1 minus S into N. So, for example,

suppose we have got an application where 75 percent is parallel and 25 percent is serial.

Now if I have got a single core then I have got S so, S equal to 75 percent is parallel 25

percent is parallel. So, S equal to 0.25 and this for a single processor system N is equal to

1.

So, this expression becomes 1 upon 0.25 plus 1 minus S that is 0.75 divided by 1 N equal

to 1. So, this gives me equal to 1 the speed up is equal to 1. So if I have got single

processor system then with respect to single processor system there is no improvement

now suppose I put 2 cores. So, N is equal to 2. Now what will happen? So, this is this

expression value becomes 1 by 0.25 plus. So, 0.75 divided by 2 and then so, this value.

So, it is 0.75 by 2 so, this is 0.375. So, 0.375 plus 0.25 so, that will make 0.625.

So, 1 upon 0.625 so, this is about 1.6. So, this is equal to 1.6. So, what happens is that so;

that means, if you go from 1 processor to 2 processor and the core is such that it is 75

percent parallel and 25 percent serial ok. So, then you can get a speed improvement of

1.6 only. Now you see if you look into this expression carefully. So, it says that so, this is

the serial portion. So, this I cannot do anything here and this 1 minus S is the parallel

portion. So, if you are having more number of processors. So, this time will reduce by a

factor of N theoretically of course. So, this is not the practical thing. So, this is

theoretical because practically there will be time for communication, there will be time

for data distribution and all that. So, they are not taking care of here.

So, assuming that everything those timings are 0; so, this is S plus 1 minus S by N. So,

this part gives me the speed up. So, this so, to look into this possible values of this S of

the speed up, when N approaches infinity then this term is almost 0. So, the speed up

becomes 1 by S. So, if you have got infinitely much number of processors then the speed

up will be given by 1 by S. So, as you can see that the serial portion of an application has

disproportionate effect on the performance gain by adding additional cores; so, if you

add additional cores.

So, even if I add infinite number of cores also then the speed up will be 1 by S. So, if the

sequential portion is more than naturally speed up will be less. So, if a program is 100

percent sequential program then even if you put say infinite number of cores the speed

up will remain 1 only. So, that is the idea of these Amdahl’s law. So, how does this law

take into account the contemporary multi core systems? So, multi contemporary multi

core systems are much more complex. So, naturally this is a theoretical study and this

may not be able to give true picture there, but this gives the theoretical upper limit on the

degree of speed of that you can achieve.

(Refer Slide Time: 09:49)

So, next we will have a look at a graph that shows that ok. So, this is the ideal situation.

So, as you are increasing number of processors, then the speed up should grow like this.

So, this redline so, with 1 the speed up is 1 with 2 the speed up should be 2 with 4 the

speed up should be 4.

So, it should be grow like this. On the other hand ideally what happens is as the

sequential portion increases. So, this graph is not coming fully. So, as the sequential

portion increases this speed up starts decreasing ok. So, these are as you go down the

speed up the sequential portion is more as a result this improvement becomes poor. So,

that is the graphical interpretation of this Amdahl’s law.

(Refer Slide Time: 10:34)

Next looking into the types of parallelism that we have so, we can have data parallelism.

So, data parallelism the focus is on distributing subsets of same data across multiple

computing cores and performing the same operation on each core. So, the same data is

the data has to be distributed. So, the same operation will be done on the different data.

For example, if you have to sum the contents of an array of size N, then on a single core

system we can have one thread to at to that would sum the element 0 to N minus 1.

So, assuming that array indices run from 0 to N minus 1 so, on a single core system I can

have one thread that does the addition for all this N entries in the array. On a dual core

system we can have thread A running on core 0 that could sum 0 to n by 2 while thread

B running on core 1 could sum N by 2 n minus 1 and then after that I can do the addition

of these 2 partial sums by using again maybe core A or core B either of them. The two

threads would be running in parallel on separate computing cores. So, that way the once I

have distributed the data. So, 0 to N by 2 to core 1 and. So, 0 to sorry this should be N by

2 minus 1 this is not N by 2; so, 0 to N by 2 minus 1 to core A and N by 2 to N minus 1

to core B.

Once we have done the distribution after that, I give the same instruction for both the

cores telling that you add all the numbers that you have. So, after that they come up with

the partial sums and then using another addition. So, I have to do that. So, that way we

have got this thread level data parallelism. And, the other hand we can have task

parallelism also that involves distributing not data tasks not data, but tasks across the

multiple computing cores. Each thread is performing a unique operation and different

threads maybe on operating the maybe operating on the same data or they may be

operating on different data. So, different tasks are different to given to different threads

so, that is that is the task level parallelism.

So, this we have like previously I was telling for the same matrix you may be interested

to find the transpose of the matrix, inverse of the matrix and determinant of the matrix.

So, like that so, they can so, I can defined the same matrix can be given to a number

process number of tasks. So, we can and each tasks may be doing one of these

operations. So, that way we can have task level parallelism there.

(Refer Slide Time: 13:32)

Next so, this is the situation. So, in a data level parallelism so, we have got this the data

is divided into portions and each core is given the part of the data. So, core 0 is doing for

this part, core 1 is doing for this part. So, the instruction is same across all the cores or

the task level parallelism so, data may be the same data is given to individual all the

cores or may be different datas I get different data are given to different cores. So, both

of them are possible, but the operations that they are doing are all separate. So, that way

we have got this task level parallelism. So, this individual cores so, they are doing

different tasks, but the data may be same or data maybe different. So, that is the task

level parallelism.

(Refer Slide Time: 14:17)

Now, coming back to the discussion on operating system; so, we can we can think about

the operating system when it is doing executing the processes. So, we have seen that the

process may have multiple threads. Now, we also know that when a process is executing.

So, there are 2 modes of execution for some time it executes in the user mode and

sometimes it executes in the kernel mode. So, normal computational jobs when it is

doing. So, it is executing the user mode whenever it is doing a system calls. So, it is

going to the kernel mode. Now so, at both the user level and kernel level we can think

about multiple tasks that can go simultaneously. So, maybe at user level I have got say 3

different tasks that that should go parallely.

So, I can have three different user level threads that takes care of that. Similarly at kernel

level also I can have multiple such tasks going on parallely. So, I can think about kernel

level threads also. So, this support for threads maybe provided at both the user level and

kernel level. So, we have got user threads that are supported above the kernel and are

manage without kernel support primarily by user level threads library. So, we have at

user level threads libraries are there.

So, using those library calls so, we create different threads and those threads are they

execute in parallel, but they are not making any system core. So, none of them are going

to kernel mode of execution on the other hand this kernel threads they are supported by n

manage directly by the operating systems. So, as I operating system designer; so, we

have to we have to provide this kernel threads and we have to tell interface for those

kernel threads like whenever a system call is made. So, we do not need to tell the user

like how this system call is going to be mapped onto threads at the kernel level, but the

interface like how this system call would be made.

So, up to that much is sufficient, but at the implementation level the operating system

designer may think that I will have multiple threads in the kernel, and when a particular

system call is being called so, how this is going to be mapped onto the kernel level

threads there. So, at user level; so, it is handled by thread libraries, at kernel level it is

handled by the operating system. So, virtually all contemporary systems support kernel

thread. So, we have got Windows, Linux, Mac OS X. So, all these operating systems so,

they will support kernel level threads.

(Refer Slide Time: 17:00)

So, we will see how these things are actually taking place. So, there can be different

types of relationship between the user and kernel threads there can are there are 3

different 3 very common ways of establishing relationship like many to 1, one-to-one

and many to many. So, between the user level threads and kernel level threads how this

mapping will be or the relationship will be there. So, just like many other say type of

mapping that we have in different domains. So, how is it taking place in case of threads?

So, that is so, that will be that will see and the first 1 is the most simple one is the one-to-

one model.

(Refer Slide Time: 17:37)

So, in one-to-one model what happens is that, each user level thread maps into a single

kernel thread. So, so creating a user level thread also creates a kernel thread. So,

whenever a user thread is created suppose a new thread is created here. So, accordingly a

new kernel thread will also be created and this thread will be mapped onto this, similarly

this thread is mapped onto this, this thread is mapped onto this, this thread is similarly

there should be another thread on to it this will be mapped. So, whenever you create a

new thread in the user space, a new thread is created in the kernel mode also.

So, each user level thread maps to a single kernel thread is a creating a user level thread

creates a kernel thread as well. So, more concurrency than many to 1 because what

happens is that if this thread makes the system call, then this thread will be taking care of

that or if this thread makes a system call. So, this thread will take care of that. So, for

every user level thread I have got a kernel level thread, which will be taking care of that.

So, whether it is good or bad. So, it is good because I do not I do not be bothered about

whether some other thread got blocked or not. So, if this thread got blocked here it

cannot proceed. So, other threads will not suffer because of that because they have got

their own thread. So, it is restricted to that particular operation only or that particular

thread only. So, this whole thread may be blocked, but that will not make others to wait.

So, this is better in the sense that we have got more concurrency than many to one, but

the difficulties that we are creating large number of thread. So, as and when a user thread

is created one kernel thread is also getting created. So, that way if the user program does

not make a good number of system calls, then this kernel level threads. So, they will be

mostly unutilized ok. So, that way it is not a very wise decision to create so, many kernel

so, many kernel level threads and that the system resources are blocked because of that.

So, number of. So, we have got more concurrency, but number of threads per process has

to be restricted like; one process may go on creating threads user level threads and as a

result for each of them it will create some kernel level threads also and since the program

that we have. So, program is written by some user who may or may not be very good in

this thread level programming may be by mistake the user creates an infinite loop and in

that infinite loop it creates some threads.

So, as a result at the kernel level also infinite number of threads will get created. So, that

is a very dangerous situation for the system. So, operating system designers were they

do? They often put an over restriction and on the number of threads kernel level threads

that you can create or number of threads that you can create per process. So, this to today

stick this overhead. So, typical examples are windows and Linux. So, they have got this

one-to-one module.

So, whenever user level thread is created a kernel level thread is also created and there is

an upper bound on the number of threads that you can create in a process.

(Refer Slide Time: 21:06)

So, that is one-to-one model then there can be many-to-one model; so, many-to-one

model. So, many user level threads mapped to a single kernel thread. So, we have got a

single kernel thread here so, many of these user level threads. So, they are mapped here

similarly that can be another set of user level thread. So, they are map to another kernel

thread.

So, I can have mapping, but this mapping is fixed. So, if this thread is blocked somehow

may be this fellow has made a system call and it was getting executed by this kernel

thread and it got blocked somewhere here, then this threads will also get blocked because

they cannot make any system call. Of course, this group does not suffer because of this

thread getting blocked. So, this group does not suffer. So, we have got this many user

level threads mapped to a single kernel thread and one thread blocking causes all 2

blocks. So, that is the thing that I was telling that if this thread gets blocked, then all this

threads they will get blocked. Multiple threads may not run in parallel on multi core

system because only 1 may be in the in kernel mode at a time.

So, this is another difficult situation what it says is that. So, maybe I have got multiple

cores now this multiple core suppose I do not have this thing I do not have the second

one I have got only this 4 user level threads and this is a kernel level thread and now

suppose I have got 4 cores in my system. So, I have got 4 cores. So, they are this is given

to core c 1 this is to c 2 this is c 3 and this is c 4, but after that c 1 c 1 has made a system

call and it is here then if c 2 in its execution also needs to make a system call; may be c 1

1 to print something and. So, it is make it has made a call to print f and as a result it has

gone into kernel mode. Now c 2 was.

So, this is for c 1 and c 2 also wants to print something c 2 wants to maybe in may not be

printing. So, it may be opening a file it may be open a file, but now this thread cannot

proceed because only 1 kernel thread was there for this c 1 c 2 c 3 c 4 group of user

threads and that is now busy with c ones system call. So, c 2 has to wait. So, even if you

have even if you have got multiple cores available. So, you cannot make them to run

parallely. So, multiple threads they may not run in parallel on multi core system because

only one maybe in kernel mode at a time. A few systems currently use this model like

solar is green threads GNU portable threads.

So, they follow this particular strategy the advantage that we have is of course, thee

mapping is unique. So, that way the handling this kernel mode of operation becomes

simple. So, that that is why it is done. So, maybe it is it maybe it will work well for may

systems and that way we can use it.

(Refer Slide Time: 24:10)

Another module that we have is the many to many mode. So, this is more a more flexible

one that way. So, we have got a group of kernel threads and sorry we have got a group of

kernel threads like this and we have got a group of user level threads and the mapping is

between them. So, whenever this user level thread. So, this user thread supposes it wants

to make a system call. So, will the system will find out whether the any kernel level

thread is free maybe this one is free.

So, as a result this system call will be executed by this thread. Now unlike the previous

one where we had got a single kernel thread for a group of user thread. So, here I have

got multiple kernel threads. So, if this fellow now makes a system call then maybe it can

find this thread that can take it up. So, there is no distinction between the capabilities of

this kernel thread. So, what all of them can execute all of them can realize all the system

calls. So, as a result there is no distinction between their capabilities. So, only thing is

that they should be free; so, if the user the kernel thread is free and any user thread

makes a system call.

So, it will be taken up by that. So, it allows many user level threads to be mapped to

many kernel threads and allows the operating system to create a sufficient number of

kernel thread. So, now, the west designer is now a bit safe because unlike that one-to-one

mapping when that you whenever a user thread is created. So, one kernel thread will be

created. So, like that or say that fixed mapping that many-to-one mapping like only one

kernel thread is there for a group of user thread. So, that that type of situation so, what

happens here is that the west designer can decide I will create a some number of kernel

threads which is assumed to be a good enough for the type of load that the system has

and it may also be a tunable parameter that way.

So, that way; so, the user the west designer will create a number of kernel threads and

then do this mapping between the user threads and kernel threads. So, allows the

operating system to create sufficient number of kernel threads and Solaris prior to

version 9. So, it was using that. So, windows with thread fiber package so, this can also

be the also use this type of facility in which this can be implemented.

(Refer Slide Time: 26:46)

There can be another situation which is known as 2 level model. So, it is similar to many

to many except that it allows a user thread to be bound to kernel thread. So, this is this is

many to many so, we have got here we have got this many of this user thread. So, they

are bound to some kernel threads, but the set that is bound to. So, that is fixed. So, this

set of user threads it is bound to the kernel thread similarly this set is bound to. So, this

thread so, that way it goes on. So, the typical examples of this type of system are IREX,

then HP-UX then Tru64 UNIX and Solaris 8 and earlier system. So, they use this 2 level

model. So, many to many model is the most generic one. So, that is there. So, that it is

there, but this 2 two level model. So, it allows a user sais to be bound to the kernel

thread. So, their binding is fixed.

(Refer Slide Time: 27:51)

Now, going to thread libraries; so, they there are different libraries that have been created

for helping the user to write programs using the using this threading philosophy. So,

otherwise will be it is difficult to develop applications around thread using this thread

concept, with thread library it provides the programmer with an application API interface

for creating the creating and managing threads.

There are two primary ways of implementation one is a library entirely in the user space

and we can have kernel level library supported by the operating system. So, as we know

that there are user level threads and kernel level threads. So, it may be that we can have

this library entirely created in the user space. So, all that the libraries that that we have.

So, the user level thread will be using it and of course, operating system will support this

kernel level thread so, that can be utilized.

So, there are three primary thread library is one is the POSIX Pthreads library, then we

have got windows threads library and we have got java threads library. So, all these

libraries they will provide us some way by which we can create some threads, we can do

computation, we can do waiting for some thread to be over this parallelism can be taken

care of.

(Refer Slide Time: 29:17)

So, will be looking into these thread libraries. So, the one of them is this Pthreads library

and it is provided as a standard. So, it has become a standard now. So, many of the

operating systems we will see that we will they will follow this Pthreads libraries like

Solaris, Linux Mac OS X and all. So, they support this Pthreads library. So, we will not

going to much detail of this Pthreads, but we will try to get a glimpse of like how this

thread level programs will look like.

So, that will do in the next lecture.

