
Operating System Fundamentals 
Prof. Santanu Chattopadhyay 

Department of Electronics and Electrical Communication Engineering 
Indian Institute of Technology, Kharagpur 

 
Lecture - 12 

Processes 
 

Next we shall be looking into one of the very important concept in operating system 

design which is known as Processes. So, these are the fundamental blocks that we have 

in any operating system. So, the programs that are executing so, they are ultimately in 

terms of some processes. So, processes; the definition of a process is something like this 

a very working definition is a program that is under execution. So, whenever we are 

running a program so, from an operating system angle so, it is look as a process. 

So, whenever we are talking about managing the user programs we are essentially 

talking about managing the processes that are running in the system. So, we try to 

differentiate between programs and processes like from a users perspective so we are 

writing one program. Now that single program it can have a single process in the system 

or it can have multiple processes in the system. Similarly, a number of programs 

developed by different users that may be combined into a single process so, both are 

possible. So, from the operating system angle so we will be looking into this executable 

units as processes. 

(Refer Slide Time: 01:35) 

 



So, the topics that we are going to cover in this discussion is the concept of process then 

how the scheduling is done like there may be a number of processes in my system. So, 

which process will be executed text by the processor so, that is the scheduling one. 

And similarly there may be multiple users so, maybe if we are following the policy of 

giving priority between the users; so, that maybe one possibility. Then we can also have 

some sort of round robin type of approach where we give some small time quantum to 

every user or every process so that is also a type of scheduling policies. In this we will 

see that there can be different types of scheduling policies. 

Then what are the operations that we can do on processes. A typical situation; typical 

example is creating a new process like we may in a within a program may be we try to 

create another process which will be executing another program. So, that is a quite 

common like we may start for example, if we are doing some database operation may be 

a new request has come for get retrieving some data. So, for that we create a new process 

that retrieves that data. And in the meantime another request comes for retrieving another 

data so for that we may try to create another process. So, this way we can have different 

type of creates. 

Similarly maybe there are some processes in the system which are ill-behaving or 

misbehaving like it may be using a lot of memory. So, the system administrator may 

decide that this process be terminated because otherwise the other processes in the 

system so, they are suffering so the system throughput is going down. So, that way they 

administrator may want to terminate that process or kill that process, the administrator 

may try to reduce the priority of a process. So, these are certain operations that we may 

like to do on some processes. 

Another important point that we have is inter process communication. So, processes 

when they are executing in a system so, they are actually part of some job. So, as a result 

they may need to interact between themselves. So, this inter process communication is 

another very important issue. So, we will be looking into some examples of IPC systems, 

then communication in client server system. So, this is a very special type of computing 

platform which is common in data base then this web browsing and all. 

So, where it is basically an event driven approach or event driven system like the server 

that we have the database server or the web server. So, it after it initialises so, it actually 



waits for some client request. For example, the database server will wait for some query 

and similarly the web browsers so, it will be waiting for some user asking to access a 

particular URL. So, like that so they will be waiting for that and when that request comes 

as a from a client process so it will initiate the corresponding action. 

There may be multiple clients whose requests have arrived. So, as a result the server may 

want to do them parallely or sequentially depending upon the design. So, whatever it is 

so, this communication is very important in client server system. So, these are the 

concepts that we are going to cover. 

(Refer Slide Time: 04:57) 

 

To start with we will try to define like what is a process? A process is a program in 

execution. So, this is a very working definition any program that is under execution we 

can call it a process and process execution must progress in sequential fashion. So, this is 

the basic assumption that any in a computer system so, any software that you have. So, 

that executes in a sequential fashion. So, one instruction is executed, then the next 

instruction is executed and like that it goes on. So, a process is a program in execution 

and its execution will go in a sequential fashion. 

A program is a passive entity stored on disk and process is active. So, why do we say so, 

is like this. So, suppose we have got some program to calculate roots of a quadratic 

equation ax
2 + bx +c. Now, we have written a piece of program here. So, this is the c 

source file and then this c source file so, we compile; we compile this code and get the 



corresponding dot exe file executable version of the file. But this file that we have so, 

this is also nothing, but a file only so, this is a file and this is also a file. So, there is as 

such there is no difference excepting that this is an exe file, this is a binary files, apart 

from that there is not much difference. 

So, this files so both this files so, they are existing; they will be existing in the disk and 

when this files are existing in the disk so, they are not going to be executed. For; now if 

the user wants that the corresponding program so, let us call the program name as root 

find. So, this root find program is called; so, then the first thing is that this from the disk 

this program has to be copied into the main memory. So, this is the main memory so, it 

has to be copied into main memory. 

So, after it has copied into main memory so, then only the program can start executing. 

So, as long as it is residing in the disk so, we cannot do anything ok. So, this program is 

a passive entity that that is why it is called a passive entity that is stored in the disk in the 

form of an executable file, but the process when the program has been loaded into the 

main memory now the program can be executed. So, it can really find the roots of some 

quadratic equation now, given it will read the values of abc and find the roots. 

So, this program becomes process when executable file is loaded into memory. So, this is 

the difference between programs and process; so, program is a passive entity, process is 

an active entity. So, execution of a program has started via GUI mouse clicks, where 

most of the operating systems now we have got this graphical user interface. So, it is 

using that interface or it may be it is combined line entry of it is name interface it is name 

so, this is also there. So, there are some combined line interfaces so, using that also the 

user may type the name of the program or process to be executed. 

So, this is another possibility and there are certain programs that are automatically 

loaded by the system and they are executed. So, particularly the operating system 

processes so, that is also execution of some program. So, it is a inherently done by the 

operating system. So, execution may start via different means and one program can be of 

several processes. So, we have got multiple users executing the same program for 

example, there maybe multiple people doing the editing job. So, each student in a 

laboratory class maybe writing their own programs and all of them connected to a server 

and they are all using the editor software of the server. 



So, as a result multiple users are executing the same editor program. So, that way one 

possibility is that if there are 10 users doing the editing job. So, we create 10 copies of 

that editor software on to the main memory, but that is definitely a big wastage of space. 

So, what is normally done is that this processes they are designed in such a fashion we 

have got only one piece of editor code available in the main memory, but there are 10 

different data segments, each data segment holding the editing data of one user. So, that 

way we can have the say, multiple users executing the same program and one program 

can have can lead to several processes. 

(Refer Slide Time: 09:44) 

 

The structure of a process a process is more than the program code which is sometimes 

known as the text part. So, it also includes the current activity which is the program 

counter and the contents of processor registers. Also includes process stack which 

contains temporary data and the data section which has got global variables and it has got 

some local variables in the some dynamically created local variables in the heap. 



(Refer Slide Time: 10:15) 

 

So, what we mean is like this; so, if you look into this diagram it explains it in a better 

fashion. Coming back to the same say example that is the program to find roots of that 

quadratic equation sorry, roots of that quadratic equation a x square plus b x plus c. 

So, here in this while writing this program I may have a main routine. In the main routine 

I read the values of a b c; it reads the values of a b c then it calls a function called find 

root a b c and then it will be doing some printing print roots etcetera and then this find 

root function is somewhere here, then this print root is there. So, this may be the program 

is organised like this. 

So, when you translate this program; when you translate to compile this program so, you 

get the corresponding dot exe file. Now when this program is executed there are certain 

parts in it so, one thing is that I should have this program lines. So, these all these lines 

that I should have the corresponding code for that plus I should have these variables abc 

ok; I should have these variables abc, I should have some corresponding memory 

location, similarly if the roots are say x 1 and x 2, then I should have some location for 

them. 

And I should also have some so, this within this find root function I can define some 

local variable may be the discriminate and all. So, this is a local variable. So, we have 

got certain things one thing is the program code and one another part is the global 

variables ok, we have the global variables, then we have got the parameters that are 



passed for a function and the local variables. So, these are the components of a program 

when it is executing. 

So if you look into the; if you take a snapshot of the memory where the program has 

been loaded and it is running. So, you can find that it has got some sections like this, one 

part of that memory it will contain the program code so that is the text part. 

So the when the program counter is initialised to this and then it goes on executing line 

by line here depending upon if there is a fall to a functions. So it will call it and all that 

so, that is there, but it will be executing those routines those statements. Then the global 

variable that we have so, they will come to this data segment part. So, this memory as far 

as the process is concerned. So it can be think about to be consisting of different 

segments we have got code segment that holds the program text, we have got the data 

segment which has got the global variables. 

Now this parameters and this local variable so, these two so, they are created in to the 

stack so, they go to the stack. So whenever this find root function is called so, in the in 

the stack we put the variable values a b and c and then it also saves the return address it 

also saves the return address and then the control branches to this routine and coming to 

this find the root in. 

So, it will find that and other local variable at discriminant is there; so, this discriminant 

variable is also created in the stack so, this is also allocated space in the stack. Now when 

this part of the program is executing so, it will be using these variables that we have here 

ok. So, it will be utilising these variables. 

So, that way the stack is there and sometimes in the program so, we can have some 

dynamic memory allocation. So, by say for example, in C program; in C language we 

have got the malloc system call. So like that it creates some dynamic space; so, those 

dynamic space so, they are located from this heap space ok. So, this stack part is for this 

local variables and parameters that we are passing and this heap is for the dynamics 

variables that are created so, this way it goes on. 

So, this normally what is done is that this stack and heap so, these two instead of making 

them two separate segments. So, we take a big chunk of memory and from one end the 

stack starts to grow and from the other end the heap starts to grow. The idea is that some 



program may be using less of subroutine call so, sub program calls. So, the stack will be 

less, but it may utilising lot of dynamic memory. So, that heap space will be utilised 

more. 

On the other hand some program may be using a less of dynamic memory, but it may 

have lot of recursive calls as a result it creates, it utilizes the stack a lot. So, to maximize 

the utilisation of this part of the space so, this stack and heap so, they are located from 

that ends of the same memory block. 

So, ultimately so, depending upon your program that resides in the disks so, you have got 

only the compiled version of the text, but when you put into the memory and the 

program is executing the snapshot if you take so, that is quite different from what you 

have in the disk. So this is actually explained in the previous slide that we had. So, this is 

actually telling that a process is more than the program code so which is sometimes 

known as the text section. 

So process includes the value of the program counter. So, whenever a program is 

executing suppose I have got a program so, like this so and it is executing line by line. So 

at suppose we are looking at this point. So, how do you identify this particular location in 

the program? One is the value of the program counter that is there plus there are a 

number of CPU registers that will be holding some of the temporary values for the 

variables. So this CPU registers so, they are also a part of the current activity. 

So, apart from this CPU; as far as the CPU is concerned so, within the CPU you have got 

the program counter and this processor registers so, they are part of this process. So, 

apart from that we have got in the memory; we have got the stack of the process the data 

section the global variable and the heap so, these are part of the things. So, from for a 

process so, we can say that we have got this CPU registers plus the program counter this 

is coming from the CPU plus we have got the stack plus heap plus the code segment. So, 

this whole thing is defining the process when it is executing. So, that way the process 

structure is much different from the program structure. 



(Refer Slide Time: 17:40) 

 

So, in terms of execution sequence when a process is going through different phases of it 

is evolution. So, we can say that it goes through a number of states. So, the initially when 

the process when the user says that I want to execute the program to compute the roots 

quadratic equation that program find root. So, that way the program the code of the 

program has to be copied from the disk into the main memory. 

So when the process is being created when the user says that I want to execute this 

particular program. So how the user can say this, one possibility is by giving, some by 

clicking the some mouse. So one possibility is a mouse click. So, we can click the icon 

corresponding to a particular program on our desktop. So, that is by mouse click or it 

may be by means of some giving the name of the program so, typing the name of the 

program ok. 

So, these are; these may be the two options by which you want to tell the system that I 

want to execute this. So, what the system does is that ultimately if this is the operating 

system, then it must create a new process which will be taking care of this particular user 

request. So when this process is just created so we have not yet marked it to a particular 

operation and all so that is the new state so, processor is just been created. 

Then we have got the after that has to be done. So if this process has to execute that 

program for finding roots of quadratic equation, then the next step is to copy the program 

from the disk into the main memory. So for that we have to allocate some space in the 



main memory and copy the program from the secondary storage to the main memory. So 

after this copy has been done into the main memory now the program is ready for 

execution. 

So, now if the process gets CPU so, it can do the execution. So, this particular transition 

is known as new to admitted and this transition happens when the program is when the 

program has been copied onto a main memory and it is ready for execution. Now, as 

soon as it is ready so it is not required that the process will start executing, because at 

present the processor or the CPU that we have, so that maybe busy doing something else. 

And so, this one it has to wait for the this particular routine or this particular program or 

process it has to wait for getting the CPU. 

So after sometime the scheduler takes a decision that now this process should be 

executed. So when it happens the process makes a transition from ready state to the 

running state. So, in the running state so, process has got the CPU and it is executing it. 

Now while executing again there can be a different many different situations that can 

occur one possibility is that that for example the program that we looked into that we are 

considering finding roots of quadratic equation, the initially the program needs to read 

the values of a b and c. 

Now reading the values of a b and c so, the user will give the values through keyboard 

so, it will take some time. So, the system that the CPU should not be wasting its time 

waiting for the user to enter the value of a b c which is users are much much slower 

compared to the electronic processors. So, what is done? The process whenever a process 

wants to do some input output operation or some event wait so, it will it is put on to a 

waiting state and the next ready process from the queue. So, it is taken by the scheduler 

and it is put on to the running state. 

So, this scheduler it dispatches the next process from ready to running. So, CPU is busy 

doing the next, handling the next process and this process which was waiting. So, after 

sometime when the user has entered the values of this a b and c. So, it informs the 

system that this IO is over ok. So, whichever hardware module is doing this operation for 

example, if it is done by the keyboard then when the keyboard keys are placed. So, it 

sends an interrupt to the system and say that way when the interrupt is processed. So, 



after sometime these values of a b and c have been read and then this process from the 

waiting state it goes back to the ready state. 

So, again after sometime the process will get chance for execution and it will continue 

from whichever point it has left it so that way we can have this ready running and 

waiting sort of thing. Another possibility is that when a process is executing so, it is 

given some small time quantum and after sometime the time quanta expires; so, when the 

time quanta expires so, it the processor has to be given to the next process in the queue. 

So, the process which was executing here so, it has to be taken back to the ready state 

and the next process should get a chance. So, this way the interrupt will come and is 

ready process. So, it will be so, this process comes back to the ready state and the next 

process gets a chance. So, that way after so, if a process has got several chances for 

execution in the cyclic fashion then maybe it is over now. So, it will do an exit and the 

process goes to a state called terminated. 

So, these are the different states that we have in the process. So, the new state is the 

process is the point at which the process is being created, we have got the running state 

where we have got this instructions are being executed, then this waiting; the process is 

waiting for some event to occur, then ready the process is waiting for to be assigned to a 

processor and the terminated when the process has finished execution. 

So, we have to understand this state transition process behaviour of a processor very 

well, because any operating system that we design. So, the processes will be designed 

particularly following this type of state transitions. So, they have some operating system 

may have some additional states, some operating systems may not be having it; so, but 

overall the situation is like this that the process makes state transitions in this fashion. 



(Refer Slide Time: 24:20) 

 

So, every process has got a control block associated with it which is known as the PCB 

or the Process Control Block. So, here we note down all the important information about 

the process. So, information associated with each process so, they are stored in this 

process control block or task control block. 

So what are the things that we are remembering, one is the first and foremost is the 

process state ok. So which or what is the state of the process at present whether the 

process is running, waiting, ready, etcetera. Then the program counters so, it is the 

location of instruction to the next execute. So program counter at present what is the 

program counter value, may be the program that we are that that is executing has got 

total 1000 bites long. So, out of that at present where is the execution point so that is kept 

in the program counter. 

Then we have got the CPU register values. So, all the CPU registers they will be holding 

some value at this point of time when the process is executing. So, that way it contains 

the CPU register value so, processor centric registers. So, there are some like in the CPU 

there can be different classes of registers, some of them are users user defined sorry 

some of them are general purpose registers, some are some special function registers. So, 

depending upon registers which come into the context of program execution so, they are 

called process centric registers. So, those registers will be copied on to this program 

control block. 



Then we have got the CPU scheduling information like the priorities, then scheduling 

queue pointers etcetera. So, this scheduling information is necessary because the 

scheduler has to take the decision. In the memory management information then this 

accounting information and IO status information. So, memory management information 

is for memory allocated to the process, accounting information for the system usage and 

IO status information for these IO devices that we have in the system the open files 

etcetera. So, they are kept in the PCB. 


