
Operating System Fundamentals
Prof. Santanu Chattopadhyay

Department of Electronics and Electrical Communication Engineering
Indian Institute of Technology, Kharagpur

Lecture – 11

Operating System Structures (Contd.)

In our last lecture we were discussing on modular approach for operating system design.

(Refer Slide Time: 00:29)

So, one possible way of doing that modular design is known as the layered approach so,

in which the operating system is developed in terms of layers. So, a lower level lower

that actually is close to the hardware and as we go higher and higher in the levels. So, it

is more it is the level at which users will be interacting.

So, in summary you can say that a system can be made modular like this one is the

layered approach, where the hardware is the bottom most layer. So, layer that is layer 0

and this bottom layer above that we have got different layers. So, on top of this basic

hardware layer, so we have got layer one where we have got the software that can

directly talk to the individual devices. So, which are commonly known as the basic input

output services of the operating system. So, that talks to different hardware the modules

that we have in the system.

Then on top of that layer one so, another layer 2 will be made so, that will be utilizing

those bio services for doing some operations at a slightly higher level. For example, in a

bio service we can have a facility to display single character on to the screen and at a

higher level so, we can utilize that function to display string of characters or maybe we

will have at a bias level 1 5 1 routine that reads the character from the keyboard and that

can be put at a higher level. So, that can read a sequence of keys from the keyboard.

So, this way we can define hierarchal level of this operations and the lowest layer so, that

is the layer one which is closest to the hardware. And, as we go high and high in this

hierarchy so, at the top most layer we have got this user interfaces that has got modules

that can talked directly to the users. So, that maybe in terms of these editors, compilers,

linkers, loaders, like, so they are the next higher level in though the highest level module

that you have. Given the database packages that we may have so, any application

software that we have so, that will consist of this layer N user interface.

(Refer Slide Time: 02:38)

So, a typical operating system layers so, at layer M it consists of data structures and a set

a routines that can be invoked by higher level layers. So, this is what I was telling so, at

lower level you will implement some data structures and routines that are invoked by the

higher level layers. So, layer M in turn can invoke operations at lower level so, that is the

complete hierarchy. So, each layer is implemented only with operations provided by

lower level layers. So, it will not try to do a step jumping or it will not try to bypass a

lower layer and directly talk to the lowest level.

So, like that it for example, if you are developing a routine for displaying a character

string. So, we will be using the lower level routine that is available for displaying a

characters. So, we will not send directly the characters to character stream to the basic

display unit. So, layer does not need to know how these operations are implemented,

needs to know only what these operations do. So, that is that differentiation between

interface and implementation.

So, at a higher level when you are looking into lower level routine so, we are just looking

into the interface part and in the implementation of those routines so, that is done at a

lower level. So, if you modify the implementation the higher level routines are not

affected because interface is not modified. Similarly, if you modify the interface not the

implementation part, then the higher level they should know that the interface has been

changed. So, accordingly that those routines can be designed; so, advantage that we have

is the simplicity of construction and debugging, the layers are selected.

So, that each uses functions and services of only lower level layers. So, because it

because of this modular structure so, your debugging becomes easy. And simplifies

debugging and system verification so, first layer can be debugged without any concern

for the rest of the system because the hardware layer. So, we can have some hardware

level tests that can verify that the hardware is working correctly. On top of that hardware

so, the layer 1 software so, it can be tested by checking whether those routines are

working in the context of operations by the hardware. So, once the first layer is

debugged. So, based on that we can it we assume its correctness and based on that we try

to debug the second level then that one go on.

So, whenever we are working with whenever we have debugged layer N for layer N plus

1 we will assume that layer N up to layer N everything is ok. So, we try to test the

functionalities that we have at layer N plus 1.

(Refer Slide Time: 05:18)

So, Microkernel system structure so, what that, this particular approach so, it moves as

much from the kernel into the users space. So, kernel is made very simple and most of

the operations that are moved to the users space. So, the advantage that we get is when a

program is executing. So, for many of the operations it need not go to the kernel mode.

So, kernel mode maybe the kernel mode is implemented in such a fashion that at one

point of time only one process maybe in the kernel mode of operation. So, if multiple

processes they try to enter into the kernel mode so, there will be blocking. Now, if most

of the functions are moved to the user space then this kernel switching will not be

required. So, the process blocking will be less.

So, Mac is an example of microkernel so, Mac OS X kernels so, partly based on Mac so,

this is that is there. Communication takes place between user modules using message

passing. So this simple message passing mechanism is used for communication between

modules. The benefit that we get easier to extend a microkernel, because microkernel is

very simple so we have to so, it is structural it is simple so extending becomes easy.

Easier to port the operating system to new architectures because the microkernel parts

that actually talks to the hardware. So, if you are putting onto a different set of hardware

only this microkernel part needs to be changed so, that way the portability becomes

simple.

Then more reliable because less code is running in kernel mode so, you do not have to

you can be sure about in the kernel mode there are not many processes most of the time

there will be only one process. So, we do not be we need not be bothered about

concurrency synchronization and all. And security is also ensure because if we allow

only one process inside the kernel mode when naturally there will be if the problem for

of inconsistency will be less so, the security that is taking care of.

Detriments, so performance overhead of user space to kernel space communication so,

naturally users space to kernel space. So, if you want to switch then lot of information

are to be sent so, that is there.

(Refer Slide Time: 07:35)

So, this is a typical structure of a microkernel structure. So, basically on top of hardware

we have got microkernel and microkernel it has got inter process communication

primitives, memory management and CPU scheduling policy. So, they are actually

consisting of this kernel mode of operation and other operations like application

programs, file system, device driver so, they are all run they will be running in the user

mode only.

In a normal kernel what happens is that many of these functions from this file system

device driver etcetera. So, they are moved into the kernel mode, but here to make the

kernel simple. So, they are put on to a different modular, they are put into the user mode

only and most of the operations are done in the user mode and only the very important

part they have been kept in the kernel mode. However, the messages when the when you

try to send messages between this subsistence. So, that message is communicated via this

inter process communication primitives so, that goes to this microkernel. So,

communication part is through the through the microkernel. So, that is definitely an

overhead that we have.

(Refer Slide Time: 08:46)

Many modern operating systems implement loadable kernel modules. So, loadable

kernel models means as and when required the kernel modules will be loaded. So, entire

kernel is not loaded into the main memory at the time of booting. So, it uses object

oriented approach so, there is the object oriented approach means we have got interface

and implementation part different inheritance and all those properties object oriented

approach so, that they are used in this kernel design.

Each core component is separate, now each talks to others over known interfaces and

each is loadable as needed within the kernel. So, whenever we need to load it so, then it

will be loaded. It is similar to layers, but with more flexibility so, Linux, Solaris, so, they

are based on this loadable kernel modules policy.

(Refer Slide Time: 09:36)

There are hybrid systems very few operating systems adopt a single, strictly defined

structure, because after all operating system is designed by human being and this it is

very difficult to follow a single design paradigm throughout the entire part. So, it is

varies from person to person and definitely depending upon the requirements of the

operating systems many a time we have to do a choice between the alternatives within

the same operating system implementation.

So, instead of going for a single strictly defined structure we can combine different

structures resulting in hybrid systems that will have effect on the performance security

and usability of the issues, usability issues. So, for example, Linux is monolithic because

having the operating system in a single address space provides very efficient

performance. However, Linux is also modular so, that new functionality can be

dynamically added to the kernel. So, you can have your own routines that will act as

different that will act as a replacement for the standard Linux kernel routine.

So, that can be done so, that way it can be customized, but at the same time Linux is

monolithic because entire operating system is a single piece and they are that is put into

the single address space. So, in this way you can find the mix of different design

philosophies.

(Refer Slide Time: 11:08)

Now so Mac OS X and iOS, so these are so, kernel is there on top of that, we have got

core frame works on top of that, we have got application frameworks, then on top of that

you have got user experience and then the applications at the top level. So, applications

they can talk to all other layers, but these individual layers of they will be talking to the

next lower layer for doing the interaction. So, this is architecture of Mac OS X.

(Refer Slide Time: 11:34)

Then Darwin , it is a hybrid structure the kernel part and it and shown Darwin is a

layered system which consists of primarily the; consist primarily the Mach microkernel

and BSD UNIX kernel.

So, we have got this type of a mechanism so, this is the Mach kernel, on top of that we

have got scheduling IPC and memory management units. So, you have got mach traps

and BSD for system call the library interface application, apart from that there are some

small models in the mach kernel iokit and kexts. So, these are for some IO handling IO

processing and all. So, this is the very simple system so, that is again a hybrid system.

(Refer Slide Time: 12:18)

So, Android as we know it is developed by Open Handset Alliance mostly by Google.

So, open source similar to similar stack iOS so, iOS stack we have just seen. So, this

Android OS stack also like that, based on Linux kernel, but it is modified it provides

process memory and device driver management and it adds power management. So, this

because for Android most of the time it is working on these mobile phones and all via

power is very important issue. So, we cannot have high power consumption.

So, power management so, whenever some hardware part is not use so, it has to be shut

down and all. So, this power management is a very important issue. So, Linux kernel has

been modified in Android to take care of this power management. Runtime environment

includes core set of libraries and Dalvik virtual machine. So, this is so, the apps will be

developed in apps are developed in Java plus Android API; Java class files complied

with java byte code and then translated to executable and then runs on the Dalvik VM.

So, these are the standard Android development environment.

Libraries that we include are the frameworks for web browser that is webkit, database

SQ Lite, multimedia, smaller libc. So, these are actually some simplified version of

standard as standard so, modules and softwares that we have in say for example, in

Linux. So, that way it helps in making the operating system lighter so, that it can be put

on to this mobile devices.

(Refer Slide Time: 13:58)

This is the Android architecture. So, we have got at the lowest level we are got the Linux

kernel, on top of that we have got a set of libraries, SQ Lite, open GL, surface manager,

own media, and it framework, webkit and libc. So, these are actually some mechanism

by which we can handle database graphics and this multimedia and all so, these are there.

On the other hand for Android runtime you have got core libraries and the Dalvik virtual

machine. So, this machine actually whatever be the underlying hardware so, it is this

ultimately this Dalvik machine so, it will virtualize that. So, any application that is

developed so, it will be thinking that the underlying processor is a Dalvik virtual

machine.

So, it will be having programs translated into that machine and this machine is ultimately

implemented by the underlying hardware. So, as a result we can have same software

running on different platforms, only this interface from this virtual machine to actual

machine. So, that interface has to be generated and rest of the thing is unaltered.

(Refer Slide Time: 15:04)

Now, how to debug the operating system, so that is also a very important issue; so,

debugging is defined to be finding and fixing errors or bugs. Now OS normally generate

log files that contain error information and failure of an application can generate core

dump file capturing the memory of the process.

 So, many times what happens is that if we are running a program and it comes across

some situation which is extraordinary, like say I have got a division by division by a

variable y. So, say k equal to x by y and somehow the value of y becomes 0. So, that is a

divide by 0 error, now how that divide by 0 came, how did the y became 0 become 0. So,

that is difficult to understand until and unless we know the actual trace. So, this is

actually available in the dump files. So, in the core dump file so, it is there. So, that way

this we have often this core dump is produced.

So, operating system failure can generate crash dump file containing kernel memory. So,

many times what happens is if system comes across unexpected errors which it cannot

handle. So, if the system crashes and when it crashes so, it produces a crash dump. So,

that some debugger or some designer can try to figure out what exactly went wrong at

the time the system crashed.

Beyond crashes, performance tuning can optimize system performance. So, there are in

an operating system there are many tunable parameters as we will see later, one possible

one thing is that the block size like whenever the whenever a process or program is

accessing secondary storage. So, it is (Refer Time: 16:50) in terms of blocks of data. So,

what is the block size? Typical block sizes are 4 kilobyte or 8 kilobyte like that. So,

depending upon the hard disc system that we have so, may be the block size different

block size will be suitable.

So, what is a good block size so, that is an important issue. Second another parameter

that we may need to tune is the time quantum given to individual processes for

execution. So, that way if there are large number of users so it may so, happened that we

want to give small time quantum to each of them. Now, what is that small time that we

are talking about so, what is the exact time duration so, that is also a tunable parameter.

So, we have got many tunable parameters and then this we can do that, this tuning can be

done.

Sometimes using trace listing of activities recorded for analysis. So, you just keep a trace

like what was happening for say last one day and based on that we may try to figure out

that what can be done for tuning the system better. Profiling is periodic sampling of

instruction pointer to look for statistical trends, like which type of codes executed more

like is it doing some IO access or is it doing some competition so, that type of profiling

can be done. So, that is also taken care that data is taken and later on the somebody may

do an statistical analysis to see whether we can do something in the tuning process.

So, there is something called a called Kernighan’s law which says that debugging is

twice as hard as writing the code in the first place. So, this is very important because

somebody else have developed the code and now we are trying to find the what is the

difficulty with that code. So, that way it is very difficult and even if it divide by done by

the same person who developed the code it is very difficult often to find out the exact the

root cause of the situation.

So, if you write the code as cleverly as possible you are by definition not smart enough

to debug it. So, this is the point cleverly written code means there will be even many

tricks in the code so, understanding that code becomes difficult. So, it is advisable that

while designing such a big piece of software like operating system. So, we try to avoid

these clever tricks as much as possible, because that will make the program debugging

very difficult.

(Refer Slide Time: 19:15)

Then this is an example of performance tuning. So, improve performance by removing

the bottlenecks. So, we try to figure out what are the bottleneck like if you are familiar

with the Window system this Windows task manager. So, it has got a performance

button so, where if you press it so, it will tell you what is the CPU usage, what is the

page fault rate and like that so, page file usage so, that way. So, it also gives you the

history that tells like what happened over last some time units. So, what like say so, what

is the CPU usage like if the CPU usage is low; that means, that there are not much

processes in the system.

And if here for example, trying to see the reason for this throughput being low then if

you see that the CPU usage is low; that means, that user the number of processes in the

system is also less. So OS must provide means of computing and displaying measures of

system behavior so that is important. So for example, there is a top program of Windows

task manager so, that gives you the task details that are there.

(Refer Slide Time: 20:30)

Now there are generations of operating system. So, operating systems are designed to run

on any of a class of machines, the system must be configured for each specific computer

site. There is a nSYSGEN program that obtains information concerning the specific

configuration of the hardware system. It is used to build system specific compiled kernel

or system tuned kernel or it can also generate general more efficient code than one

general kernel.

(Refer Slide Time: 21:03)

Now, the booting of the system so, this is very important like when a system boots so,

when you switch on press the power button or the reset button of the computer then what

happens. So, when power initialized on system execution starts at a fixed memory

location. So, this is fixed by the processor and though so, if you reset the processor then

there from the manual of the processor you can find that the program counter value is

loaded with some specific one some specific value so, execution starts from that point.

So, I should put some meaningful code at those memory location starting at that memory

location.

For example in most of the processers we will find that if you press the reset button, if

you give a reset pulse to the processor the program counter value becomes 0. So, that

next instruction that the processor expects is from memory location 0. So, form memory

location 0 we should put the appropriate code so, that this system boots properly. So,

operating system must be made available to hardware so hardware can start it. So, from 0

location 0 I should have instructions such that it either it is the beginning of the operating

system or it is the it is a symbol code that loads the operating system from the secondary

storage into the main memory and then transfers control to the operating system.

So, there is a small piece of code which is called the bootstrap loader. So, what happens

is that it is like this. So, as I was telling that from memory location 0 we have got. So,

this is the memory location 0 now program counter value at the beginning it has become

0. So, in this part of the memory so, we put some code whose responsibility is that from

the disks so if this is the disk so, it will copy the operating system part from here and put

it on to the system.

So, that is the from the disk it will take it and it will be copied onto the system and as a it

is copied in this part then at the end of this routine. So, it will transfer, it will make the

program counter value equal to this so, that the program execution can start from this

point onwards. So, this is so, what is done here. So, this operating system operating

system should have this bootstrap loader where this bootstrap loader is it is loading the

portion from the secondary storage into the main memory and then this is the this is

bootstrap loader should always be present when the system boots.

So, it is normally kept in some ROM or EEPROM that that is that is actually the kernel

part of it. Sometimes 2 step process where a boot block at fixed location loaded by ROM

code which loads the bootstrap loader from disk. So, this is also there like in many cases

that boots making that bootstrap loader very simple for that what we do is that. So, here

we just have a piece of code that starts reading the disk from a particular boot block ok.

So, many of the operating system so when you format a CD you might have seen this

that, whether you want to make it a boot disk or not so, then if you are trying to make it a

boot disk when at a particular sector. So, it will be writing some booting information and

that disk can be used for booting the system, because that this bootstrap loader that we

have. So, it will be accessing that particular sector and we loading the portion from there

into main memory.

So, common bootstrap loader GRUB is one such thing it allows selection of kernel from

multiple disks versions and kernel options. So, GRUB is a software loader software

bootstrap loader so, it has got many options. So, it can probably can have multiple

operating system based situation so, that way it can be done. So, kernel loads and system

loads the system and then it is then running. So, it after the kernel has been loaded so,

system starts running phase.

(Refer Slide Time: 25:12)

So, to conclude so, we can say that OS provides a set of services at lowest level we have

got system calls and once the system services are defined the structure of the OS can we

developed and the since OS is very large modularity is very important. So, these are the

things that we have. So, what we have seen is that at the lowest level we have got the

hardware at the lowest level we have got the hardware, then on top of that we have got

the different layers of software. So, on top of that we have got these layered approaches

and that way we make it both layered and modular.

So, that helps us in making this designing this OS very easy, because at higher and

higher levels so we can utilize the routines that we have that we have at the next lower

level and then we can do it in a modular fashion. So, and in general this lowest layer it is

implemented as the kernel; so, to do protection and all so this whenever we are trying to

go to this lowest layer of OS design.

So we have got some sort of protection by which we can take care of this kernel mode of

operation. So, that way we can go from go into the OS design and with a good

knowledge of computer architecture. So we can be that is we will be able to design

operating system properly and in our successive classes. So, we will see different models

of the operating system what are the issues there and how are they going to be designed

in the way for any system.

Thank you.

