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Lecture – 09
Equivalence of DFA’s and NFA’s

So, we are talking about NFA and we are talking about the language accepted by NFA

and in this class will see the equivalence between the DFA and NFA. So, now, before that

we want look at the how to build a NFA, given the language we want to see whether we

can construct a NFA. So, we know that if a language is, given a language if we can have

a construct a DFA that is called regular language, this is same I mean if we can have a

NFA also and I will  see the NFA is easier to build then the DFA. So, to come back

equivalency we have to will just discuss how to build a NFA, building NFA is easier than

building a DFA.
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So, suppose we have a sigma, this is I mean for example, maybe 0, 1. Now it could be

any anything else  also,  now suppose  we have  given a  language.  Now to  check  this

language is regular or not earlier what we are doing? We are doing that we are trying to

construct a DFA A such that the language of the DFA is L; that means, all the string from

this L is accepting this. Now again, now we are going to try to build a NFA, given a

language we try to build a NFA such that this is L, then also this is called a regular



language  because  this  is  the  finite  automata  and  will  see  the  DFA or  NFA are

equivalence. Given a NFA you can construct a equivalence DFA which is accepting same

the language of that two are same.

So,  and the  constructing  building  NFA is  easier  than  building  a  DFA will  take,  will

discuss this through an example.
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Suppose we need to build a NFA, which is NFA accepting all binary string strings having

the pattern that ends with the pattern string. So, end with the pattern 1 0 1. So, here

sigma is 0 1. So, what is this L? This L we should write as this so, this x 0 1.

So, this is our language and we want to see whether this language is a I mean we can

have a corresponding NFA which is which is accepting this, I will see the NFA is easier

to construct than the DFA ok. So, now, let us try to construct a NFA which is accepting

this type of string which is just ending with 1 0 1 the last string is 1 0 1 like 1 0 1, 0 1 0

1, 1 1 0 1. So, last three strings are so 0 0 1 0 1 like this. So, last three strings are 1 0 1.

So, now, the question is how to construct a NFA.
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So, we want last three strings are, last three beta 1 0 1; 1 0 1 nah yes ok. So, we have to

start with the state q. Now if we see a 1 we will go to here because here we do not need

to mention that like deterministic way we do not need to have that delta so, that is the

advantage. We can have non deterministic way; even we may not have the move from

one state with some input. So, that is the advantage of building a NFA. So, if you see a 1

will reach here then if you see a 0 will reach here. So, slowly we are moving to the

something like final state. Now, if you see a 1 will go to the q 3 this is the final state. So,

this is one branch I mean if you have just 1 0 1, now we can have.

So, this is accepting 0 1 0, but if we have something like 0 0 1 0 1 or 1 1 or just 1 0 1

like. So, for that what we do? Will simply do is hoping over a head, that is all very easy

because that will take care of this x we need to accept all the string like this w. So, this x

is, will be take x is coming from. So, it could be, if it is empty then it is directly going

there, if it is not empty let us hop there. So, this is the way we can. So, it is very easy

construct DFA on this it may not be that much easy to construct.

So, that is why if the building NFA is easier. Now suppose if you can now in now for

next will see the equivalence between DFA and NFA, given a NFA we can have a DFA

which is accepting the same language. So, then we have we can say this language is a

regular language ok. So, we showed that let us take one more example of building NFA.



(Refer Slide Time: 06:41)

Suppose we have the say two patterns are simultaneously coming 0 1, we have two or it

can be a b I mean instead of 0 1 we can have a b.

So, suppose you have a language we have two patterns are coming simultaneously. So,

like this is denoted by a star is basically if it is it could be so or a b star, a star or a b star.

So, this is basically this is what is for regular expression will talk about this in more

details. So, it is expecting like this.

So, if it is a or if it is even null string also it is accepting. So, what is the corresponding

NFA then? We can have starting state then with a we can go to q 1 and with a we can go

to q 2 and this is if want if you want to accept this type of string.

So, we can hop you had if you have a. So, this is one of the final state and then we can

have a another state q 3 this is also final state if you say a b ok. Now if you see a form

here after this so, a b then we need to have b also. So, we go a here like this. So, these are

the,  this  is  the NFA which is  accepting  this  type of regular expression this  is  called

regular  expression  we  will  discuss  in  more  details  on  this.  So,  simultaneously  it  is

coming.  So,  it  is  expecting  the  string like  a,  a  a,  a  a  a  this  is  one branch which  is

accepting or it is accepting a b, a b a b like this.

So,  a  b  a  b  like  this  so,  this  two types  of  string  this  accepting.  So,  by  the  regular

expression way we can write it as a plus the union, this is one language this is another



language you can take the union we will  we will  discuss this  type of thing in more

details.  So, we will  talk about the regular  expression. So, now, we will  move to the

equivalence  between  DFA and  NFA.  So,  given  a  NFA how  we  can  construct  a

corresponding DFA which is having accepting the same language.

(Refer Slide Time: 10:00)

So,  that  is  the  next  the  equivalence  of  DFA’s and  NFA’s.  So,  now, first  of  all  first

observation is a DFA can be treated as NFA.

So, DFA can be treated as NFA, NFA is more general. So, what is DFA? DFA is Q sigma

delta q 0 F, NFA is also five tuple Q sigma delta q 0 F only there is a difference in delta.

So, here delta is a function from Q cross input alphabet to Q, it is a fix single term, single

term set and this delta is a function form Q cross sigma to power set. But this is a single

term set, but this also can be I mean if you have a a it is going to some p. So, p can be

written as set form. So, this is also subset of q. So, this is also belongs to two to the

power q although it is going to a single form set we have only one option, but that can be

treated as a NFA.

So, the DFA is can be treated as a NFA this one observation, another observation if we

have a given NFA, if the language accepted by NFA then there will be a corresponding

DFA which  is  accepted  the  same language.  So,  then  so,  that  we have  to  show that

equivalency. So, if you can show that when the regular language means the language for

which we have a DFA and if you can show these two are equivalence. So, this if we can



have a NFA because NFA is easy to construct, easy to build then we can have a this

regular  language for regular  language we can just  construct,  try to construct  a NFA.

Because we know the DFA and NFA are equivalence, I mean that we have to prove.

(Refer Slide Time: 12:38)

Language of a NFA that is L of N is also a language of some DFA, also a of some DFA.

And we know that language of some DFA is called regular language, this is the definition

you have use if we have a finite automata and that finite automata could be a NFA also.

So,  that means, we can say NFA accept regular language. So, if your language is called

regular if it is accepted by a NFA.

So, and that is also true because we have this equivalency. So, that part we have to show.

So, NFA accepts only the regular languages. So, now, let us go to the main part of it, the

equivalency because NFA is easy to construct. So, to check whether a language is regular

or not sometimes DFA is difficult to construct, but if it is a regular there has to be a DFA,

but NFA is easy to construct as we have seen in the last example. So, if you can construct

a NFA then it is regular, because the NFA is having the corresponding DFA which is

accepting the same language ok. So, let us try to construct the given NFA to the DFA.
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So, suppose you have given a NFA, given a NFA. So, N which is Q sigma delta q 0 F.

So, this is the state this is the delta n will denote this by N to indicate this. So, this is the

N. So, from here we are going to given NFA, from here we are going to have a DFA

which is accepting the same language. So, out of construct a DFA let us design like this

is the construction. So, D or sometimes you refer as A anyway Q D sigma will be same,

delta D will be different the tangential rules will be different and this is.

So, starting state is same, but this is and say this and F D would be same. So, yeah so

now, such that we want to design such DFA such that language accepted by this N same

as language accepted by this is our goal. So, then we say these two are equivalence ok.

So, now, what is Q D? Q D will be 2 to the power Q N. So, if Q N is, if we have a some

states of this NFA q 0, q 1, q q k say this is say suppose there are k states. So, this is

basically  the power set  of  this  q.  So,  setup  all  possible  subsets.  So,  the  what  is  the

cardinality of this? Cardinality if there are n states. So, if there are n states in q.

So, cardinality of this is 2 to the power n. So, set up set up all possible subset of this,

these are our single state of the DFA. So, like these are all state q 0 this is single term set

q 1, Q N this is all (Refer Time: 17:20) then q 0 q 1, q 0 q 2 two together like this, three

together like this. So, these collection and also the empty said through these collection is

called the power set and this power set is nothing, but our view states of this DFA ok, this



is the way how we are define this. So, if this is having n state then this DFA is having 2

to the power n state.

But all state may not be we do not need to consider all state. So, you just consider those

states which are reachable from which are accessible from q 0 by the NFA. So, there will

be some states, some subset which is not accessible from q 0. So, we will just discard

that; so, will take an example on that. So, that is why will write this as subset of 2 to the

power  Q N because  we will  just  discarding all  those  states  which  are  not  accepted

accessible from the from q 0. So, now, this is the, now what is F D? 

(Refer Slide Time: 18:34)

So, F D is the final state. So, this will be the set of subset Q D because Q D I mean the

states is the subsets such that it is intersect some with the F D is null, not null.

So, a is intersects at F N is not null, this is the way we defined because it should have a at

least 1. So, we call so this is the subset all state of DFA is a subset. So, in this subset

consist of some states at least one state should be a final state. So, those subsets have to

be a the final state of, final state of the DFA ok. So, this is the where we construct is and

the rule the delta, now we have to define the delta. So, delta D of S comma S is the set

sorry S is the set S comma a. So, now, this S is the subset of this Q N delta D of S

comma this is nothing, but it is union of delta N of p comma a p belongs to S. So, how

you define this?



So, we have a state. So, this is a collection of states we have some p 1, p 2 say p k now

this is one state in d this is the subset. So, this is basically p 1, p 2, p k. So, this is the

subset of S. So, now how to apply this? Delta on this, delta on this is nothing, but so, this

will go to. So, if you apply individual of these is going to solve under these delta N on a

it is going to some set it is also a p 2 is also going to some set. So, this collection is

basically our again some S R which is the subset of this Q N. So, this collection is our

move delta D of S comma a ok. So, this is how we define this thing. So, now will take

one example it will be more clear ok.
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So, let us take as example suppose we have a NFA like this A. So, this is the starting state

and we have B, we have C and we have a final state D and the moves are like this 0. So,

this is 0 or 1, this is a NFA. So, we can have non deterministic move. So, this is 0 this is

1 and this one is 0 or 1, suppose this is a given NFA and we want to convert this NFA to

a equivalence DFA. So, for these what we need to do? So, this is our NFA now we are

going to construct a DFA.

So, for this so what is the Q N? Q N is A, B, C, D now we have to construct also the Q D

will be Q D will be 2 to the power Q N; that means, set of all possible subset of this. So,

among these will take only those subset which is visible from A ok.
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So, if you do that we can just construct the DFA. So, this is A 0 1, 0 1. So, from A so

what we do from A we can go to B and C. So, this B and C with the 0 move know with

the 0 move we can go to B and A. So, this is A B will write and now with 1 we can only

go to. So, 1 we can go to A and C.

So,  this  is  the way and these are  all  states  in the DFA. So, this  is  the DFA we are

constructing DFA done these are all the function ok. Now, we take A, B from A, B where

we can go from A, B if you take a 0 we can go form a we can go to B and from B we can

go to D with the 0 move and from A we can go to A itself. So, A, B, D and from A, B

with 1 move from a with one move we can go to A or C and from B with one move there

is no move. So, this is same as A C now we take A C over here this is another state in the

DFA. So, from A C if you take a 0 we can go to B and if you take A. So, this same as A B

and if you take from A C, if you take a one move from A we can go to C or A and from C

we can go to D.

So, this is nothing, but A C D. So, this way if you continue so, A B D if you take this is

the final, one of the final state because it contain D, D as a final state. So, if you work on

these which is be A, B, D again and this one A, C, D. So, and then again if you take

another final state A, C, D then it is going to A, B, D and A, C, D. So, there are other

subset also, but those we do not need to consider because those are not accessible from



A, only these are the subsets which are accessible from A. So, this is our delta now let us

write the graph for these.

So, this is our A, this is the starting state this is the DFA. So, now, if we take a 0 move

from A we can go to either A, B. So, we can rename this states if we like and with one

move we can go to B A C because this is the deterministic. So, you should have a move

and from A B if we, from A B if we give A 1 move we come here and if we get A 0 move

will go to another state which is from A B; A, B, D A, B, D this is with 0 move this is

with the one move and form A C again, if we A C we can go to A B with the 0 move and

with 1 move will go to A C D. A C D and from A C, A C D or is A B, A B D if you take a

1 0 will be here and one move will go here. And from A C D if you take a 0 will go to

here and if you take a 1 here and these are the 2 accepted state of this DFA.

So, this is the equivalence DFA. So, whatever language is accepted by, whatever string is

accepted by this  NFA, the same string will  be accepted by this  DFA. So, this  is  the

equivalency between the DFA and the NFA ok. So, yeah so we do not need to consider

the all the state subset because many subsets are there because, these are 4 so 2 to the

power 4 because empty state is the subset. But we do not need to consider those because

those are not accessible from the starting state, we are only bothering about the language

accepting that.

So, we can rename these as X state Y state Z state W state and something like R state.

So, we can rename that this thing. So, this is one example to construct a given NFA to

DFA.  So,  every  NFA will  have  corresponding  DFA,  which  is  accepting  the  same

language. So, the language of DFA NFA is same as the language of that corresponding

DFA so; that means, to check whether a language is regular or not what we do will just

try to construct a NFA which is easier to construct then the DFA. So, if you can construct

a NFA we can straight away say that language is regular.

Thank you. 


