
Introduction to Automata, Languages and Computation
Prof. Sourav Mukhopadhyay
Department of Mathematics

Indian Institute of Technology, Kharagpur

Lecture – 43
Simplification of CFG

Ok, so, we are talking about context free grammar.

(Refer Slide Time: 00:34)

So, now we will discuss the, how to simplify the grammars like, how to minimize the

variables, terminals and the productions, because ultimately, we are looking for, given a

grammar G, this is a sorry, this is 4 tuple V T P S, where V is the set of vertices, finite

number of vertices, I sorry, the variable set of variables, which is finite and this is the set

of input alphabet or we call this terminal in the terms of CFG set of this, also finite

terminals.

And P is the productions, set of productions or rules and S is a special symbol, which is a

sub set of, which is belongs to V, which is a variable and a which is called starting

variable. And we define the language of language generated by this g is nothing, but set

of all string of terminals as that which is derived from S, I mean there is a parse tree, ,

which yields W ok.

So, this is the language generated by G. Now, we are concerned about this language only,

I mean we do not much bother about which, at the variable, it is using inside which of

the terminal. Ultimately, we are looking for that the language, which is generating by this

grammar; this is the context free language. Now, when we do this, we may observe that

may not be all the variables or the terminals are used. So, when we do this we will

observe these few things, first one is maybe not all symbols in V union T, I mean either it

is a variable or terminals are used.

So, those symbols we can just remove, I mean remove in such a way that it should, it

should give us the same language. Ultimately, we are looking for this language, you want

to get this language, but if there are I mean in the process of the productions, I mean

derivation. If we can, find out the some of the variables or some of the terminal even are

not, you are not at all use in that derivation.

So, in any of the derivation; so we can just remove those and also maybe not all the

productions are used, not all the productions are used to generate these variables. I mean

generate this grammar, generate this language ok. So, then we can remove those

productions. So, we try to eliminate those symbol, those production, so that way we will

do that, we will get the simplified version of this grammar and that will give us the same,

that will generate the same language. So, let us take an example, then it will be more

clear.

So, ultimately we are looking for the grammar, the language generated by this grammar.

So, if we can reduce these, by reducing the some of the variable, some of the terminal,

some of the productions, then it is good.

(Refer Slide Time: 04:14)

Ultimately, it will we have a grammar G, if we can reduce this to G prime by reducing

some of the variable some of the terminals and if we can count this to are generating the

same grammar, by same language, that is good, that is called simplification; that is what

we are looking for in this lecture.

(Refer Slide Time: 04:38)

So, we will take some example to see some of the, so let us take an example. So, suppose

we have given this grammar G, which is 4 tuple again. These are the variables S A B D E

and the terminals are small abc and they have a productions rule and S is the starting

variable. So, let me write the P. So, P is in consists of all these rules. S is going to A B

this is wrong rule. A is going to a, B is going to b, and also B is going to D, and E is

going to small c or epsilon.

So, these are the productions, this set is the P set, the production set or the rule set. Now,

we want to see what are the what is the L of G? L of G is nothing, but we start with S and

which terminally L of G is nothing, but all the strings, which can be derived from S using

the production on in G. So, this is nothing, but only a b, if we see a b string, because S is

going to we can take A B or you one, rule then, if we reach to D by using B; if we can

use the left most derivation, if we use the leftmost derivation. So, A is going to small a

and b. Now, B is b you have to option on a small, B and on this D. So, if you go to D

then we are stuck, we are no had to go.

So, then we use this one ab; ultimately, a b is the only string, it is going, it is it is yielding

by the parse tree or it is derived from the yes, so this is only a b. So that means, in this

grammar, we can observe, there are many variable, which are of no use.

(Refer Slide Time: 07:15)

So, L of G is just a b. For example, this is, this c is not use anywhere, in deriving this,

this language, even this rule, this D is not use. So, we can reduce this grammar by G

prime, where V prime, T prime, P prime and S will be same, because S is the starting

variable, which will be same in both the cases.

So, V prime will be what? V prime will be, we can just remove all those variables, which

are not at all used to generate A B. So, which are not at all use like D is not use E is not

used. So, we can just put S A B, these are all only use. So, what is T prime? T prime is

we can similarly, move all the terminals which are not used. So, only a b are use, small a

small b and we can remove some production, which are not participating in the deriving

the language.

So, like this production, this is not at all participating, there this production which is

including the epsilon null production. We can eliminate null production, later on formally

we will see how we can eliminate the null production and this is also called unique

production. B is going to D unit production, then we can replace B by D and we can

remove this production from this B ok.

So, we can eliminate this production, we can eliminate this production. So, our P prime

is nothing, but S is going to AB, A is going to a and B is going to b. This is our P prime

and S, capital S is the same, because that is the, that is the starting variable for each of

this and this is our G prime and this G prime will give us the same language.

So, this is the language generated by G prime also ok. Now, we will formally do this

verification, will use few algorithm or few theorem to do this verification. I to do the

simplification sorry; so let us try to simplify formally.

(Refer Slide Time: 10:14)

So, to get the reduced grammar; so this is the first algorithm, Algo 1 we can say or

theorem 1, Algo 1 to reduce construct, reduce grammar ok. So, idea is, so we have given

a grammar G, we want to reduce this grammar, we want to simplify this grammar, G

prime, S is same and to construct this V prime, we can just so, here we are not reducing

the T, here we are reducing the only the V prime and the production and how to construct

this will recursively construct the V prime.

So, what we do? We just look at from the all the production, which is going to the

terminal and we look at those variables. Suppose, we have a say production A is going to

say, it sometime terminal A and say B is going to some terminals. So, we only look at all

the production, which is whose the right hand side are only the terminals, then we will

include the left hand side variable to this V prime, then that is our w 1 and then we will

take the all the previous level line, the level wise. Let us define that.

(Refer Slide Time: 12:01)

So, we define this w i which is a subset of V, recursively how. Now w 1 is nothing, but

all the variables we add in w 1 which is having, which is having a production form w.

From this X to alpha, alpha is a string of terminals. So, X is going to, this is a product

where w is T star. So, we capture all the variables which are directly going to the that,

which are directly going to the terminal strings. So, these we capture. And once we get

this one, once w 1 is formed then we can have w 2 w 3. So, in general wi plus 1 is equal

to w i union off

So, like i is equal to 1, then we have already from w 1 then we are going to get the w 2.

So, w 2 will be; so all the X. Now we have a X is going to alpha in P where this alpha

belongs to this w 1 union T star. So, T union wi star; that means, this is a string of

terminals and the variables which are already added in the earlier w. So, those strings we

are capturing. So, you are starting from the, this is sort of we are considering all the

variables which is directly going to the terminal. Once we captured those then we are

capturing the next level variable which are going to those variables or mixture of

terminals and those variables

So, that is our w 2, w 3 like that. So, if we continue this, at some point of time we will

see it will try, it will converge. I mean it will it will stop. So, say w k. So, w k is equal to

w k plus J, it is not further update then we can say our V prime is w k. Once it is stopped

we will take an example and then what will be P prime, once we get the V prime we have

the T. So, P prime will be the all the rules which are involves only these symbols.

(Refer Slide Time: 14:52)

So, P prime is all the rules, A is going to alpha where A and alpha are belongs to V prime

each time. So, will not consider all the other variables which are not involving V prime

or T prime, i mean or T and S is remain same.

So, let us take an example. So, this is we are saying, this is the Algo 1 to reduce the

grammar.

(Refer Slide Time: 15:42)

So, let us take an example. So, ok, so let G be the grammar V T P S where V is the set of

variables A B C E S and T is the terminal set which is say a b d. So, all are small and P

consists of this rules, S is going to A B A is going to small a, B is going to small b, B

going to c and E is going to d, E is going to d.

So, this is given, this grammar is given. From there we are we are going to reduce this

grammar using the process. We have seen the Algo 1; that means, we want to see that we

are looking for the those variables which are directly going to the string of terminals; that

is the first level. Then the next level we are just adding those variables which are going

to the first level, including mix string of terminals and the first level variable. Then we

go for second level which are including the first level. So, these are all subsets ok. So,

this is way we construct; so, let us construct.

So, solution, let us construct the G prime. So, G prime is G prime T is same here and also

P prime and S. So, what is G prime. So, first you have to construct the V prime. So, to

construct V prime you have to construct this w. So, w 1, w 1 is the set of all variables X

which is going to w. This is a rule, all the rules or w is a. So, this is a. Sorry, I am sorry

this is all the variables, all the variables in all the variables in V such that X is going to w

in P; that is a rule where w belongs to T star. So, if you do that then who are the variables

are directly going to the terminal strings or terminals. So, this A B and E, so A B E, this

is our w 1. Now we have to get w 2 ok

(Refer Slide Time: 18:50)

So, A B E is our w 1. So, let us, so w 1 is nothing, but A B E. Now what is w 2? w 2 is w

1 union of those X which are going to X is alpha in P, which is a rule where alpha is

belongs to. Now w 1 union T star; that means, X is going to the string which involves

either the terminals, but terminals we have already captured. So, it will be a mixture of

the, that the variable we have already captured and the, and the terminals. So, who are

going there; so S is going there

So, this will be w 1 union, S is going there. Any other B is going to c, E is going to d, E

is already captured, so S is only going there ok. So, this is basically, w 2 is basically A B

E S A B E S. Now what is w 3. w 3 is nothing, but w 2 union of same thing X belongs to

V; such that X is going to alpha is a rule where alpha is now belongs to w 2. Alpha is a

string combining the w 2 variables w 2, variables for w 2 and the terminals.

So, this is the ao this is empty. You can easily check this is empty. So, this will be w 2.

So, it is converging to w 2. So, what is w 2? w 2 is this, so that is our V prime. V prime is

nothing, but A B E S. So; that means, C is not coming into the picture capital C ok. Now

we have to get the rules; we have to get the rules. Let me rub this. So, now, we have to

get the P primes.

(Refer Slide Time: 21:20)

So, what is P primes? P primes will be the, it is a subset of P, basically the transition

production such that which involves only the variables and the terminals T is same, T is

same. So, which are the productions are going to this. So, S is going to AB, it will be

there and A is going to a, B is going to b and is there

So, E is going to d, E is going to d that is all and terminally still ab abd we are the, but

although this is not used, but we have, since E is coming into this. So, in the next

algorithm we will reduce this. So, next algorithm we will see, so this is sort of from

whichever is, from the terminals we are getting this. Now the next algorithm we will see

from the S which are the variables or the set string of terminals and variable we can

reach from S.

So, if we apply those then these rules will go. This rules E will go, d will go and this

rules will go, because this is only accepting the string A B ok. So, this is our P and. So, P

is this, T is remain same and d is, S is remain same. So, this is our reduce grammar for

this given grammar by the, by this simplification process which is, which we are

referring to Algo 1 ok. So, now, we will write this in a theorem form. Let me write this in

a theorem form yeah. So, this is the theorem, this is the construction.

(Refer Slide Time: 23:50)

We can write this in a, yeah we can write this in the theorem. Form this is we referred as

theorem 1. So, this is telling given a grammar, given a context free grammar G V T P S

with l of G is not empty. If it is empty; that means, the w 1 is, there is no string which is

in w 1, nobody is going there. So, that case we are not considering. We can efficiently

find an equivalent C F G which is G prime V prime E same S; such that for each A in V

prime, there is some w string of terminal, for which, A is going to w

So, for each variable of w is for each variable in G prime derives a terminal string. So,

that is the idea, that is the idea. So, this is basically our Algo 1, this is basically our Algo

1. And we can prove this if we construct this by Algo 1; the way we did it just now. Then

we can formally prove that this will give us the, this is true; that means, all thus have

been given any string of terminal for each variable. There is some terminals, because

each variable we are considering, only those variable we are reaching to the terminals,

terminal strings ok.

So, maybe not all the, all the variables, all the variables are reachable form S. So, that,

but we are not considering here, so that will be the Algo 2, where we will only look at

that those variables or those terminals. I mean string of variable and string of terminals

which are reachable from S only. So, that we will discuss in the next algorithm; that is

algorithm 2.

Thank you.

