
Introduction to Automata, Languages and Computation
Prof. Sourav Mukhopadhyay
Department of Mathematics

Indian Institute of Technology, Kharagpur

Lecture – 25
Closure Properties of Regular Set (Contd.)

So we are talking about the properties of closure properties of regular set or the regular

language. So, we have seen the regular set is closure under union, intersection,

concatenation also.

(Refer Slide Time: 00:35)

If you have two regular sets L 1 and L 2 regular sets or regular language. In the last class

we have seen L 1 intersection L 2 and L 1 union L 2 are both regular ok. In fact, last class

we have constructed a DFA which is accepting this L 1 intersection L 2 and L 1 union L

2. Even L 1 concatenation and L 2 is also regular why because it is coming from a

regular expression because since this is a regular so, we have a DFA for this, we have

another DFA for this.

So, once we have a DFA we have a r 1 regular expression we have r 2 in r 1, r 2 is also a

regular expression which in corresponding to L of r 1, L of r 2 and so, r 1 r 2 will

corresponding to this language. So, r L l concatenate with L 2 is also regular. So, even

the close star, star is also regular which is immediately coming from the regular

expression. Now today we will discuss some more properties some more closure

properties like complement. We have given a regular set is the complement is also

regular.

(Refer Slide Time: 02:15)

So, regular set is closed under compliment. So that means what, that we have given a this

sigma set of input alphabet finite set a input alphabet and suppose you have given a

language which is the subset of any string consists of the alphabet give me coming from

sigma.

Now, suppose this is regular we have given a regular set or regular language L. Now the

question is whether the compliment, compliment means L c or L prime whichever

notation will use this is nothing, but the set of all string which are not in L. The question

is, is this regular? Is compliment is regular and the answer is yes we have to show that.

We have to show the complement is also regular. So, how to show this? In fact, if we

have given a regular expression for a language can we have a regular expression for the

compliment?

(Refer Slide Time: 03:57)

So, first of all how to get the compliment I mean let L be a L is regular. This means there

exist a DFA which is accepting L. So that means, all the string. So, L is the. So, this is the

all the string if x belongs to L, then delta head of q 0, x is reaching a final state ok. So,

that is the L. We start with q. So, with the x we should reach the F, one of the F there

may be many final states. So, this is given now from here how we can construct a DFA

which will accept the L dash or L c L complement.

 (Refer Slide Time: 05:03)

So, for that what we do we just take this we construct a M prime which is same as the

states are same and input alphabet we can keep it same without any loss of generality,

delta is also same, q 0 is same all the thing F we do the F complement. So, F is this is a

prime. F prime is nothing but Q minus F ok. So, we will make all the other states as a

final state other than this Q minus F that is the only change over here otherwise

everything is same. In that case, we claim that if the language accepted by M is basically

L prime or L c why? Because so, what are the language accepted by this? This is set of

all string such that delta head of q 0 x must belongs to this must belongs to F prime. So,

if a symbol is must belongs to L prime then it should not belongs to sorry should not

belongs to F does not belongs to F that is all. So, this is the.

(Refer Slide Time: 06:55)

So, this is basically L prime set of all string which are not accepting by L. So, that will be

accept by L prime. So, this is nothing but ok.

So, we just given a DFA we just make all the other states other than the existing final

state we just make the those states as a final states. So, that is the that will accept this and

this should be DFA, it is not for NFA, this is not possible because we can take an

example for epsilon NFA, given epsilon NFA if we do this then it is not possible. So, we

can just take a quick example.

(Refer Slide Time: 07:41)

So, if we have a language w, suppose it is a b the w does not the string w does not

contain does not containing containing a substring ab.

Now, what is the complement? Complement is before the complement let us draw the.

So, what is the complement? Complement is w belongs to this w does contain w contains

a b. Now first of all we have to show this is regular. So, for that we need to get a DFA.

So, we can easily have a DFA, this is the starting state say q 0, q 1 and say q 2. So, with a

b now with a we are here, with b we go there and with a b. So, it does not this is the final

state it does not contain the string a b, because if we are a b then with a we go here does

not continue a substring a b ok. So, this is the thing and what is the complement of this?

So, this is the DFA no this is the DFA containing this. So, I make this as a sorry this is

our M.

So, we have a DFA a we have a regular language which is containing a b because if we

take if we just take a b. So, with a we go here with b we go there. So, a b b also accepting

a a a b b b a b b all the string is accepting now complete and is this one. So, now, from

here we need to have a DFA which is accepting this language; that means, the language

which is having no sub string containing a b. So, this the our method is we just make the

take all the states other than this final state as a final state.

(Refer Slide Time: 10:41)

So, what is M prime? So, rules are same only thing q 1 q 2. So, this is b this is a,

transition rules are same. This is a this is b this is a b only thing we make this two as a

final state we make this 2 as a final state ok. Then this is accepting the string set of all

string which are not containing the substring a b ok.

Now, this method will fail when we have epsilon NFA. This is with the DFA, but if a

epsilon NFA we cannot just make the complement of the final states that will not work.

(Refer Slide Time: 11:37)

For example, if we have this epsilon NFA M 1, we having a q 0 this starting state, we

have 0 q 1 with epsilon, we have 1 q 2 this is the final states 2. So, this is the epsilon

NFA so, which is the language accepting this, this is 0 star 1 star 2 star. So, any number

of 0 followed by any number 1 followed by any number of 2.

Now, this is also accepting epsilon, 0, 1. Now, if you apply the same rule on complement.

So, M 1 star is nothing but, we are keeping the transition are same q 2. So, we are

keeping the transition same epsilon 1 epsilon 2 only things this is starting only thing we

are changing the final state as the compliment of the; here it was this to us not final you

are making final we are keeping this not final. Ok now if you do that this is also

accepting epsilon, this is also accepting 0, 1. But this is accepting by this. So, this is not

correct. So, this way of doing is not correct while this automata is epsilon NFA. It is

perfect if the automata is DFA then we can do the this complement things ok.

So, now we will talk about how to get the complement for the regular expression.

(Refer Slide Time: 13:17)

So, suppose you have a, we have given a regular expression for of L of a language. Now

how to give the; how to get the regular expression for L complement? So, how to do

that? Since we have a regular expression from here we can have a epsilon NFA we can

construct. So, from here we can have a NFA or directly DFA substrate construction and

then from DFA we can have a complement DFA, we complement DFA means we just do

the changes of the final states final state we make the other state as a final state that is we

can refer as form, then that will give us the regular expression for then we can have a

regular expression for the new DFA regular expression of L prime that is all.

So, given a regular expression of [laugher], we can follow the step to get the regular.

This is that this complement DFA means, we just change the a final state by taking the

final state other than the final state of the original DFA. Now we will take discuss

another property which is called reversal of a string reversal.

(Refer Slide Time: 14:41)

So, sigma is the set of alphabets. So, suppose w belongs to sigma star, now if w is say a

1, a 2, a a n where a i are coming from sigma, then the reversal of w is denoted by we

just reverse this. So, a n will come first a n minus 1, a 2, a 1 will just reverse it that is

called reversal of the string.

So, for example, if we have 0, if i sigma is 0 1 if you have 0 0 1 0, R means we just

reverse this. So, 0 will come first then 1 then 0 0. This is the symbol we are using. This is

the reversal of a string. Now reversal of a language means, the reversal of each string in

that language.

(Refer Slide Time: 15:49)

So, suppose we have given a language w sorry L. Now L R we just devoted by w R that

is all.

So, w R set of all w R that w is belongs to L this connection ok. So, we just take the

string and we reverse it that collection is L R. So, for example, if our L is a 0 1, 0 1 1, 1 1

0 ok. Now what is the L R? Reverse of each of this reverse of this, reverse of this,

reverse of this. Now how to get the reverse? We will just take 0 1, 1 0, so it is 1 1 0, this

is 0 1 1 this is the meaning of L R.

Now, the question is if L is regular then whether L R is regular or not; that means,

whether the regular set is closed under the reversal the answer is yes. So, you have to

prove that. So, you have to.

(Refer Slide Time: 17:15)

So, if L is regular set, this implies L R is also regular. So, how to show this? So, we can

show this by either by regular expression, but we kept to formally show this, but

informally we can just justify this like this suppose L is regular. So, L is regular means

what?

(Refer Slide Time: 18:03)

Suppose L is a regular either regular expression or regular set. So, this implies, we have a

epsilon NFA or DFA, DFA can also feed as epsilon NFA.

So, we can construct a epsilon NFA M or M star. We can construct epsilon NFA M which

is accepting this L. Now from here we can construct a epsilon NFA the epsilon NFA, M

star by just reversing the arc. So, if there is a in M if there is a path like this p to q. So,

this in M star will just make these arcs reverse like we will make it this way. So, we

reverse the arc. So, if this is a, a could be epsilon also. So, in M it will be like this it will

be q to q to p. So, we will just making the reverse of arc and then.

So, for this one. So, if this is say M is say Q this is a epsilon NFA Q sigma with epsilon

sorry Q sigma with epsilon then delta, q 0, F and we are assuming it as accepting only 1

ok. So, this is the and then what is the M M prime? M prime is we are putting Q same

sigma is also ok, delta is changing by reversing the arc and starting state we will need to

have a new starting state p 0 and what is the final state? Final state will contain the q 0

the starting state of this that is all and then p 0.

So, what we need to have? So, if there are say in this case if there are many final state f 1

f 2 like this f k then, from p 0 we have a epsilon move over here and we are reversing the

arc. So, that way the only the reverse language will be accepted by this M prime ok, but

this is the construction. And then from this M prime we can have a regular x we can

convert into DFA and from DFA this is the regular expression we can have. But we can

formally prove this by with the help of induction and with the help of regular expression.

(Refer Slide Time: 21:15)

So, this is using the then this is the formal prove using the regular expression. The

theorem is, if L is a regular language then this implies we have a r r we have a r such that

L of r is equal to L this r is the regular expression because if it is a regular language then

we have a DFA and from the DFA we can construct a regular expression ok.

Then we want to show that, this L r is also regular the reversal. So, we can show that L r

is nothing, but L of for this I must put s because I here use over here as a sorry this we

can put s. So, this r L r is nothing, but s to the power r ok. So, this we have to. (Refer

Slide Time: 22:41)

So, that means, we can show that if we can show that s to the power r if we can show for

a regular expression s to the power r is equal to then we are done. This will prove by help

of induction and for that we need to have this result on the operator using the reversal

what are the result? If s 1 and s 2 be two regular expression, then a if s is s 1 plus s 2 this

imply s to the power r is nothing, but s 1 to the power r plus s 2 to the power r this is

trivial because we can just take some example, this is the union this will be union and

this is the reverse it.

So, this is trivial and this is true for concatenation also. This is s 2 to the s 2 r s 1 r this

also you can just verify this is also trivial and if s is s 1 star then s to the power r is

basically s 1 to the power r star small r ok. So, these are the result we will use for

proving this. So, again we have two to prove this by induction, you have to show this is

result is true for the base case this is we will prove this on the number of operators. So,

suppose we assume that if the number of operated is 0 the base case. So, base case means

we have only three possibilities.

(Refer Slide Time: 24:35)

S is phi, epsilon, a where a is this is the base case here the number of operator is 0. Then

in this case this is the base case with the 0 operator then in this case what is. So, what is s

r? s r is this to the power r to the three cases a to the power r.

So, these are basically what these are basically same as phi, this is basically same as

epsilon, this is this is a singleton set. So that means, L of s to the power r is same as L r to

the power sorry L s to the power r because these are all our singleton sets if we reverse it,

it will get the same set. So, this result is true for base case the number of operator is 0.

Now, if we assume that the result is true for up to more operator like up to k.

(Refer Slide Time: 25:45)

Suppose this is the induction assumption supposes result is true for up to k number of

operator is k or less than equal to k. Now we take a regular expression let r be a regular

expression with k plus 1 operators use ok. So, we assume the result is true for this. So, if

we have an operator like r 1 which is having in the r 1 if there are k number of operator

then we have we can write that L of this is sorry r 1 not this is s 1 yes. So, s 1 to the

power r is s 1 to the power r this is the assumption ok.

(Refer Slide Time: 26:57)

Now, if it is a k plus 1 operator then rk s can be written as either one of this form s 1 plus

s 2 or s 1 s 2 concatenation or s 1 star and in that case all of these s 1 s 2 having less

number of operator because we have used 1 operator already. So, they will be having the

operator less than equal to k. So, by the assumption of induction, induction hypothesis

we can say this result is true for both of these ok. So, this is case 1 is this. Then what is

this? This we know so,

So, now, we take the r. So, this is s 1 r plus s 2 r this we know. Now this is basically L of

this is nothing, but L of s 1 r union of L of s 2 r. Now by induction hypothesis we assume

the result is true for up to k and there are at most k many operator as their. So, these can

be written as s 1 to the power r union s 2 to the power r. So, that is all then this will be

written as r of s to the power r. So, the result is true for k plus 1 operator and similarly,

we can prove it for case 2, case 2 will be the concatenation.

(Refer Slide Time: 28:37)

Case 2 will be concatenation the s is s 1 s 2 in that case. So, s this r is basically s 2 r s 1 r.

Now if you take this language, this is basically L of s 2 r concatenate with L of s 1 r.

Now we assume this induction is true for this. So, this is basically L of s 2 r to the power

r then L of s 1 to the power r. So, this is nothing but, L of s to the power r this is the case

2 and case 3 is the star.

(Refer Slide Time: 29:33)

So, if this is sorry if s is s 1 star. So, you have used one operator. So, this s 1 must be

having less than at most k operator because this is k plus 1 operator. So, if you take this,

this is nothing, but s 1 r to the power star this we can easily prove. Now L of this is

nothing but, L of s 1 r to the power star. Now we by induction hypothesis this is nothing

but L of s to the power r to the power star.

So, this is nothing, but L of s to the power r. So, the result is true for this number of

operator is k plus 1. So, by the induction method we can say the result is true for all. So,

this is the formal proof of this closure under the reversal. So, if we have given a

language, then if you convert if you revert all of the string of the language then that the

new language is also be a regular language.

Thank you.

