Introduction to Industry 4.0 and Industrial Internet of Things
Prof. Sudip Misra
Department of Computer Science and Engineering
Indian Institute Technology, Kharagpur

Lecture — 46
Advanced Technologies: Software — Defined Networking (SDN) in IIoT —Part 2

In the previous lecture on SDN for IIoT we looked at 2 things, first of all we understood
what is the SDN architecture, what are the different components of a generic SDN
architecture and thereafter we looked into this IIoT specific requirements and how SDN
can integrate with a IloT and catering to these particular requirements of IIoT in a much
more efficient manner. We continue further and now we are going to look at few different
solutions and applicability of SDN catering to different network scenarios in this

particular lecture.
(Refer Slide Time: 01:06)

Il
SDlloT Architecture

» SDIloT - WSN

» SDIloT = Public Networks

» SDlloT = Industrial Cloud

» SDIloT = Industrial bus network

Source: Wan et al., "Software-defined industrial Internet of Things in the context of industry 4.0," IEEE Sensors Journal, 2016.

! NPTELONLINE NS BRI N RN

IIT KHARAGPUR CERTIFICATION COURSES ndustry 4.0 and Industrial Internet of Things

So, if we are talking about SDIIoT we have different types of networks, the traditional
networks like internet public networks, sensor networks which is more specific to IloT
and you also have this cloud particularly industry grade cloud, industrial traditional bus
networks connecting different sensors at the device layer and so on. So, how you are
going to make them SDN enabled is what we are going to look at a very high level and

particularly try to identify the main difficult areas in each of these architectures where

SDN implementation will pose challenge and how you are going to do that to cater to

these specific requirements, this is what we are going to look at in this particular lecture.

(Refer Slide Time: 01:58)

SDlloT Architecture - WSN

fa: | (peoduction | Customited \

| Uelaation | sorance || plan | | production J

» Software-defined WSN

Applications

platform in the context g t 5 17
of industry 4.0 Ee ey o M,.‘.;z)
» Sensor monitoring _,&Y/E == ‘MJ)
» Data acquisition '/ [I
> WSN manage and é C ;)
optimization ﬁ 0 " Hi ;

Images Source: Wan et al., “Software-defined industrial Internet of Things in the context of industry 4.0," IEEE Sensors Journal, 2016.

'~ NPTELONLINE L B A i

i IIT KHARAGPUR CERTIFICATION COURSES |ndustry 4.0 and Industrial Intemnet of Thinas
79 o WWH L i

So, first let us start with the sensor network, sensors are key to IoT and IIoT. So, if we
are talking about the virtualization, the software defined sensor network platforms; that
means, the existing sensor networks you want to make them software defined if you want
to do that what you need to take care of is basically issues of sensor monitoring, data

acquisition and management and optimization of these sensors and sensor networks.

So, typically you are going to have one view of a SDN or SD enabled sensor network
like this. You are going to have at the very bottom the data plane. The data plane will
have all these different sensors, which may be interconnected through different access
control access devices and so on. And these different devices in the data plane the
sensors etc. might be there in these different transportation devices cars, buses and so on

or they might be there in the different industrial, buildings or different other parts.

Then you have the control plane, this control plane basically has different components
for sensor monitoring, data acquisition and management and optimization. Self
optimization is very important in autonomous systems. Self optimization and self
management overall has to be implemented in a software defined sensor network
architecture. And on top as before we have all these different applications taking care of

issues of utilization, fault tolerance, production, planning, customized production,

billing, and business logic implementations, and so on so all of these different

applications over here.

So, let us now focus on this particular control plane. So, we have to take care of issues of
sensor monitoring, data acquisition and management and optimization particularly from
an autonomous management and optimization point of view. So, these 3 components as
you will notice shortly will recur in different other network settings as well, look at the

internet the public networks in general.

(Refer Slide Time: 04:24)

SDlloT Architecture - Public Networks

» Public network consists of B | [, () et J
switches, routers, and access i S
network. " L Q.. et ‘-._-'?‘

» Network monitoring /?E l":"“""‘" : B \:"'m‘"‘l J
» Management and optimization]

() |
o'

Images Source: Wan et al., "Software-defined industrial Internet of Things in the context of industry 4.0," IEEE Sensors Journal, 2016.

» Data transmission

Data Plane

NPTEL ONLINE rP s H S0 L OD

TERARAGRUR CERTIFICATION COURSES |ndlustry 4.0 and Industrial Internet of Thinas
79 aWH SO Rt

So, public networks will consist of different components such as the switches, routers
and access devices. So, these are the ones that will be there in the data plane. In the
application layer basically you have whatever we talked about earlier that does not
change more or less, but over here in the control plane in the context of public networks
you have similar kind of things like the similar kind of issues like we discussed in the

context of software defined sensor networks.

So, here we are talking about network monitoring, then data transmission service and
particularly autonomous management and optimization, it is very similar to the ones that

you had seen in the control layer for software defined sensor networks.

(Refer Slide Time: 05:24)

SDlloT Architecture - Industrial Cloud

| Faute | (Production| Customiaed)

» Focuses on data center network. g |t | e |~ o
» Data processing g ! = -f -
; 2l (D) | e
Process unit monitoring Y o, | v | —
: s 3 3 |) i)
» Manage and optimization ﬁ Ex =
|
r = o
L o

Images Source: Wan et al., “Software-defined industrial Internet of Things in the context of industry 4.0," IEEE Sensors Journal, 2016.

NPTEL ONLINE [B-E R R A N RS o]

AIERIRAGER CERTIFICATIONCOURSES ndlustry 4.0 and Industrial Interet of Thinas
T99MWH

In the context of industrial cloud, cloud as we have seen is very important. Data center
and cloud data center networks more specifically and cloud are very important for
implementing IIoT. And software defined IloT for industrial cloud settings you need to
take care of issues like the ones over here in the control plane. So, here we have to take
care of issues such as process unit monitoring, data processing service and again this

management and optimization stays the same like the ones before.

So, processing and process unit monitoring these are the ones that are there in addition to
management and optimization in the control plane. These are the building blocks of the

control plane in the industrial cloud software defined industrial cloud in I1oT settings.

(Refer Slide Time: 06:27)

SDlloT Architecture - Industrial Bus Network

» Itincludes bus network. B | () e,) ()
3
» Monitoring of bus network is 8 t = f .
o wsing < [
done. 3 [s’ (st |
=7 masitaring | imization
» Bus state monitoring N § ey =
» Data processing [_i
» Manage and optimization E e PR o Lo
E oy ; » T s

Image Source: Wan et al., "Software-defined industrial Internet of Things in the context of industry 4.0, IEEE Sensors Journal, 2016.

NPTEL ONLINE R RS R R o R il
ITKHARAGPUR CERTIFICATION COURSES

Industry 4.0 and Industrial Internet of Thinas
T29WWH stfomeg o

If we are talking about industrial bus network, in an industrial bus network what is going
to happen? At the device layer you are going to have this industrial communication, the
industrial bus, (the communication bus) to which these different sensors and other

network devices are going to be fitted to the industrial bus.

So, this is your industrial bus network and to which all this different machinery with
different sensors are going to be fitted and as usual on top you have these applications,
but this is very important these are the different components specific to industrial bus
network for the control plane in SDIIoT. So, you have over here bus state monitoring,

data processing service and the management and optimization.

(Refer Slide Time: 07:21)

Software-Defined 6TiSCH lloT

» Time scheduled channel hoping (TSCH)

» Deterministic communication

¥ Efficient resource allocation in constrained networks (e.g., loT and
lloT)

» IETF 6TiSCH is introduced to achieve the objectives

» Relevant to industrial process control, automation, and monitoring
industrial applications

Source: Baddeley et al., “Isolating SDN Control Traffic with Layer-2 Slicing in 6TiSCH Industrial loT Networks®, in Proc. of the [EEE
Conference on NFV-SDN, 2017. .

"1 NPTEL ONLINE A R R AT AN B

ITEHARAGER CERTIFICATIONCOURSES |ndlustry 4.0 and Industrial Intemet of Thinas

79 9 WH i
So, software defined networks for different settings and different architectures are all
there a lot of research work is going on catering to software defined networks of all
different sorts and more specifically for IoT and IIoT. IIoT industrial settings

requirements are more specific, there are certain specific requirements over here.

So, there is a working group which is known as the 6TiSCH working group. So, this is
basically TSCH, basically stands for Time Scheduled Channel Hopping. So, time
schedules channel hopping here actually what they are talking about is channel hopping
in a time slotted mechanism where they are going to be time slices that are going to be
there and assigning these different time slices or time slots to the different devices and
the controller at the same time this is what this particular software defined 6TiSCH

basically talks about.

This is a huge work that is going on in a very nutshell let me just give you the highlights,
but if you need to know more beyond this, this is particular literature that you can refer
to, there are so many different other literature talking about 6TiSCH particularly software
defined 6TiSCH there are so many different research literature that are available for you

to go through.

So, in a time schedule channel hopping TiSCH scenario we are talking about
deterministic communication which is very important in industrial settings. So, this

deterministic communication will help in ensuring provisioning of resource allocation

efficiently in constraint networks such as IoT and IIoT because these are constraint with

respect to energy, computation storage network resources and so on.

So, there is this IETF 6TiSCH working group which introduced different objectives
which are relevant for industrial process control, automation, and monitoring industrial

applications.
(Refer Slide Time: 09:39)

- s
Challenges: SDN in 8TiSCH

» Unreliable link = low power and lossy network

» Control overhead due to message exchange between SDN
controller and devices

» Increased jitter

Source: Baddeley et al,, “Isolating SON Control Traffic with Layer-2 Slicing in 6TISCH Industrial loT Networks”, in Proc. of the IEEE
Conference on NFV-SDN, 2017,

" NPTELONLINE PR ANI LB

ITKHARAGPUR CERTIFICATIONCOURSES ndustry 4.0 and Industrial Intemet of Things

For implementation of SDN in 6TiSCH there are different challenges; challenges of
dealing with unreliable links in IIoT scenarios. We have low power network scenarios,
network scenarios which are lossy unreliable and so on with respect to links and
components and scenarios. So, it is a highly dynamic unreliable low power highly
constraint scenario where we have to implement SDN. So, this is a highly challenging
job and so many research efforts are being poured in order to do so, and here is this
reference that you can look at to start with in order to understand how one could think of

SDN implementation in 6 TiSCH.

So, control overhead is also there, because you are talking about SDN. SDN one of the
important you know challenges is to deal with this overhead of control, control overhead
in SDN is an important challenge. It gives lot of benefits, but it is also a challenge and
how do you deal with this control overhead for this basically the slicing mechanism has

been proposed.

(Refer Slide Time: 10:55)

o ...
Software-Defined 6TiSCH

» Slicing mechanism is proposed in Layer-2

» Dedicated forwarding paths across 6TiSCH network

» Slicing mechanism isolates the control overhead

» Allows deterministic and low-latency SDN controller communication

» Advantages of SDN is utilized, while minimizing the associated
control overhead

-]
Source: Baddeley et al., “Isolating SDN Control Traffic with Layer-2 Slicing in 6TiSCH Industrial loT Networks”, in Proc. of the IEEE
Conference on NFV-SDN, 2017.

NPTEL ONLINE rP s s e BD

IIT KHARAGPUR CERTIFICATION COURSES. | ndustry 4.0 and Industrial Intemet of Things

And in this particular slicing mechanism what we are talking about is to have different
time slices or time slots similar kind of concepts like that and have certain devices have
certain time slots the end devices, edge device you know share certain time slots the
other time slots will be given to the controller. So, all of them will be using this you

know the different time slices or time slots at different points of time and using them.

So, basically the slicing mechanism will give you dedicated forwarding paths across the
6TiSCH network in a much more efficient manner and will also help you in reducing the
control overhead. So, basically holistically one is going to have software defined
6TiSCH providing through the slicing mechanism, providing deterministic low latency,
communication for improving the performance of the network, particularly from a
overall reduction of control over head and so on. So, the advantages would be that if you
use SDN you are going to take care of all of these things in a much more efficient

manner.

(Refer Slide Time: 12:08)

SD-6TiSCH Protocol Stack

» LISDN introduces a
lightweight protocol
stack

> Itis capable of reducing
control-plane overhead e

» Itis based on the IEEE

7 f ftop Etop butfer
802.15.4 implementation ‘
in the Contiki0S) > T —
—— IEEE BOL15.4-2015 TSCHRDC [SNCH
Image Source: Baddeley et al, “Isolating SON Control Traffic with Layer-2 Slicing in | “il: 3 .'“

BTISCH Industrial loT Networks”, in Proc. of the IEEE Conference on NFV-5DN, 2017,

NPTEL ONLINE rP s and e L OD

'""(_HAMGE_JR CERTIFICATION COURSES |nduslry 4.0 and Industrial Internet of Thinas
T20MWH PR

This is at very nutshell this is how this software defined 6TiSCH protocol stack looks
like. So, I am not going to go through any of them in detail, but as you can see over here
these are these different layers. So, layers at the very bottom 802.15.4 standard that we
have talked about earlier, but these you know customized ones like the TSCH RDC,
SYNCH, then you have this 802.15.4-2015 TSCH MAC and the then you have this 6
Low PAN - HC. So, 6 Low PAN basically as you know that this is a network layer
protocol. 6 Low PAN we have talked about it earlier in a different lecture and this 6
basically comes from IPV6 and has been used in the 6TiSCH protocol. So, this name
6TiSCH basically the 6 comes from IPV 6 or from the 6 of the 6 Low PAN.

And then you have this concepts of the micro SDN and this micro SDN basically
introduces a lightweight protocol stack that is capable of reducing the control plane
overhead and it is based on the IEEE 802.15.4 implementation in this Contiki operating
system which is for simulation of sensor networks Contiki is widely used. So, this

basically runs on top of the Contiki operating system.

(Refer Slide Time: 13:41)

SD-Edge lloT Architecture

/» Cluster head

¥ Industrial cloud

» Edge network
»"SDN controller

¥ Devices/equipment
» Applications

ndhetral v rquipmentin
the sdge natrh

Source: Li et al, "Adaptive transmission optimization in sdn-based industrial internet of things with edge computing,” IEEE Internet of
Things Journal, 2018,

: NPTEL ONLINE (o B R R B e vl]
IT KHARAGPUR CERTIFICATIONCOURSES |ndustry 4.0 and Industrial Intemet of Thinas

79 0MWH

So, a software defined edge for I1oT -- this is the overall architecture you have different
industrial devices and equipments in the edge network like the ones that are shown over
here. And then you have these different cluster heads and you have these edge servers
there after which are going to be internet work in this particular manner and then you

have this SDN controller which is sitting on top in order to control the entire thing.

So, you are going to have in the software defined edge IloT architecture different
components such as the cluster head, industrial cloud, edge network, software defined
network controller, devices and equipments and these applications which holistically has
been shown in this particular architecture and this is quite self-explanatory. So, I do not

need to go through each of these different components in further detail.

(Refer Slide Time: 14:39)

o S
Software-Defined Control Plane for Smart Grid

» Smart grid monitoring system using a centralized controller
» Distribution management system (DMS)

» Distributed energy resource management system (DERMS)
» Supervisory control and data acquisition (SCADA)

» Presence of APIs at both ends - distribution side and
generation side

Source: Al-Rubaye et al., “Industrial Intemet of Things Driven by SON Platform for Smart Grid Resiliency”, IEEE Intemet of Things Journal, 2017,

" | NPTEL ONLINE PP E ANt LB

LRSI CERTIFICATION COURSES. | ndustry 4.0 and Industrial Intemet of Things

So, software defined control plane is also applicable for smart energy, smart read
scenarios, in smart grid monitoring systems one could be used using the centralized
controller. There are different other components in the software defined smart grid
components such as the Distributed Management System the DMS, the DERMS which is
basically they are Distributed Energy Resource Management System. The SCADA is
there, which is important for automation as we have seen before automation and
enablement of a IIoT and for SDIIoT as well SCADA is a very important component for

enabling whatever we have discussed.

So, basically this particular literature in case you are interested for SDN enabled smart
grid this particular literature will give you the highlights of how you are going to deal
with the software defined control plane for the smart grid. So, this is the holistic view of

the software defined control plane for the smart grid.

(Refer Slide Time: 15:41)

—
L

=
(Northbaund Interface (N8I Agent) 1 | (" hdvanced dstributed

- |
management system |
) @mun% | | lIn‘I’ ——— |
/ \\ mmumm Mnlmmm
— :y
\. pr\/ | Mhmpl \F:uml T r—oims ‘

' 1
|W$a

12 R ———

L ISCIDII

Software-Defined Control-Plané for Smart Grid system

Source: Al-Rubaye et al., “Industrial Internet of Things Driven by SON Platform for Smart Grid Resiliency”, IEEE internet of Things Journal, 2017,

NPTEL ONLINE rPEs s e L OD

- Ll"_'g”‘:“ﬂ};“‘ CERTFICATONCOURSES.Indusiry 4.0 and Industial Itemet of Things
It shows only the control plane so, you are going to have all of these different
components including your Southbound (SBI), North bound (NBI) and intermediate
components such as switches and routers, operations and maintenance, service
management, fault discovery tracking, fault tolerance in general security issues top
topology management and so on. So, all of these basically are taken care of in this

particular layer the control layer.

And then you have on the other side all these different components like the ones that I
had shown you in the previous slide. So, SCADA, DERMS and DMS are part of this
advanced distributed management system. So, together basically they work hand in hand

in order to offer the software defined SDN services for smart grid.

(Refer Slide Time: 16:39)

o .
Challenges and Opportunities

» Absence of SDN protocol (like OpenFlow) for low power &
lossy network

» New protocol for enabling interaction between SDN controller and
resource constrained devices may be proposed

» Restructure of controller architecture and placement?

» Do we need loT middleware in software-defined lloT system?

NPTEL ONLINE Lo A
IIT KHARAGPUR CERTIFICATIONCOURSES |ndlustry 4.0 and Industrial Intel

So, the challenges with respect to SDN and it is implementation in IIoT is IloT we are
talking about a highly constraint lossy network having low power and so on. SDN
implementation in this kind of constant environment for example, implementation of
open flow in this kind of constrained environment is required, but is a huge challenge.
Open flow protocol itself is heavyweight and implementing open flow as such in IloT
constraint environments, lossy environments is a huge challenge which is quite

understandable, but it has to be done as well.

So, there are consequently different works that are focusing on how you can make in
open flow or other software defined solutions, light weight for implementation in these

kind of constraint lossy environments of IIoT.

(Refer Slide Time: 17:32)

o .
Challenges and Opportunities (contd.)

» Fog node/access devices play important role to provide
emergent services (delay-constrained)
¥ Can we utilize fog nodes as SDN controller?
» What about the fault-tolerance of fog nodes?

» Distributed/semi-distributed/fully centralized architecture?

"1 NPTELONLINE o
ALRCHRAH CERTIFICATION COURSES. | ndustry 4.0 and Industrial Inter

So, there are different issues different solutions for example, consideration of fog
architecture where some part of the open flow or the software-defined solutions that you
talked about can be implemented in the fog nodes, in the edge devices and so on and the
other parts can be implemented in the centralized manner in the cloud and so on. So,
there are like fog enabled solutions that are also being proposed in order to take care of
these different challenges of implementing software defined networks for this constraint

and lossy environments of [IoT.

We are now going to show you the implementation of open flow through Mininet which
is a popular emulator that is there in the community. So, how you can use Mininet for
implementing software defined networks and catering to the requirements of IIoT is what
I am going to give you shortly a brief demo. So, I have with me Mr. Samaresh Bera
along with me will help me in giving this particular demo. So, I am going to show you
first of all how this architecture that is going to look like for implementation in Mininet.
So, let me just show you this thing first that let us say that we want to implement the

software defined networks in Mininet.

(Refer Slide Time: 19:04)

IL/'I A x_.l'
; S 5-’\ ';\ = b
A + ‘-‘-:l v’}"
™ e
7o B _\I :."P./
| bl (2
| i
/ 1)
/
\ /-'f)
\ k} \ al's)) M
\£ 21\ < |
o .)
B jgns 3
|| \{r;ﬁ".l’{_ﬂz
e
l\\]‘alr‘ . pM)
J"'_\/‘.'
‘PR e 4ES A I OD
5 Ty Py) S I N

So, Mininet is the emulator with which we are going to emulate this software defined
network scenario and we are going to use the IIoT traffic; IoT traffic more specifically.
So, let us say that we have this Mininet which is going to take care of instantiation of

these different nodes.

Let us say that these round circles are your different switches. So, these are your
switches and that we will have a scenario like this that you are going to float some IloT
traffic through these switches and these switches will have something known as openV
which is basically open flow enablement in those switches. So, we have this open

rounded circles, let us assume that these are openV enabled switches.

So, which implements the open flow in it and we are going to have IloT traffic coming
through any of these different nodes and then we will have a controller. So, in SDN we
have already seen that we need some kind of a controller and is the specific controller
that we are going to use it is name is pox. So, pox controller is going to have this
particular control over these different switches which are these openV switches right, and
on top you have an application or different applications that might be running as well.

So, let us say that some application is running.

So, in our case [want to show you the execution of let us see some routing protocol. The
simplest routing protocol that I can think of is the shortest path delay; that means, that
the shortest delay path is going to be chosen. So, in short this is known as SPD the

shortest path -- the path which has the least delay is going to be chosen. So, shortest path

delay protocol is going to be executed using this particular controller.

So, this is this scenario that we are going to show you now, how you are going to
implement and how this routing is going to happen. And this is the Mininet environment
which is executed over this Google cloud and I am going to show you how we are going

to have this implementation done using Mininet emulator.

(Refer Slide Time: 22:31)

o R - - -
L) System Requirements:

1. Ubuntu 14.0 and above

2. Minimum 4GB RAM, 2core CPU, 20GB Storage

B) Software Requirements:
1. python 2.7
2. Networkx 2.1 . .
(https:/énetworkx{g1thub{1o/documentat1on/stab]e/1nsta11{htm1)
. pp
4. many more during installation

€) Mininet and POX Installation:

1. http://mininet.org/download/#option-2-native-installation-from-
source
. #install.sh -a to install everything: Mininet, POX, Wireshark, Open
vewitch, and additional dependencies

D) Network topology creation ; :
1. BarabasiAlbert - https:/jnetworkx.g1thub.1o/documentat1oq/networkx—

1.9.1/reference/generated/networkx.generators. _gra
ph.html
|7) g Io R e T

So, before I do that let me also show you something what you need to do before actually
you learn this. So, for implementation first of all we need to basically have certain
system settings. So, these are these different settings that will have to be done before we

run our shortest path delay protocol on Mininet.

So, first of all these are the system requirements so, you need to have Ubuntu 14 and
above with a minimum 4 GB RAM with 2 core CPU and 20 GB storage. The other
requirements are like you know you need to install a few software python 2.7, networkx
2.1 and pip and few more installations will have to be done. Also after you have installed
all of these then you have to install the Mininet and the POX. So, Mininet installation
you know I have given you the source for downloading Mininet and also for installation

the command that can be used is also given over here.

So, install.sh, this is going to install this mininet, pox etc. whatever the other
dependencies are there so, everything is going to be installed after the downloading over
here. So, thereafter we are going to have the network topology creation for that this

particular package can be downloaded and it can be installed in this manner.

(Refer Slide Time: 24:16)

[s o T e e— - -
source

. #install.sh -a to install everything: Mininet, POX, Wireshark, Open
vswitch, and additional dependencies

D) Network topology creation : :

1. BarabasiAlbert - https://networkx.github.io/documentation/networkx-
1.9.1/reference/generated/networkx.generators.random_graphs.barabasi_albert_gra
ph.htm]

E) IoT Traffic generator
1. D-ITG - http://www.grid.unina.it/software/ITG/

F) Experiment Settings:
1. Refer to "sway: Traffic-Aware QoS Routing in Software-Defined IoT',

IEEE Transactions on Emerging Topics in Computing, 2018, DOI:
10.1109/TETC.2018.2847296.

a) Link bandwidth

b) Link delay

¢) Flow requirements

d) Traffic generation rate

e) Packet s1ze

(7 ViGNNI N ol

And for 10T traffic generator, this is this traffic generator that we have used; we have
used the D-ITG traffic generator and it can be you know it can be procured from this
particular source. And therefore, experiment settings basically you know please go

through our paper which is the title of which is given over here.

It was published in the IEEE transactions on emerging topics in computing in 2018 and
the corresponding DOI is also given for you. So, using this particular reference you can
go through our paper the corresponding settings that are there. So, we will be using those
settings for showing you this particular experiment. So, settings of the link bandwidth,
link delay, flow requirements, traffic generation, rate, packet, size, etc. all of these are

specified in this particular paper. So, use those settings.

(Refer Slide Time: 25:09)

[T e e ee—— -
L) Experiment Platform:
1. Google Cloud Instance
(https://cloud. goog1e com/comgute/docs/1nstances/)
a) CPU - Intel skylake - 2 virtual CPUs
b) 7.56B RAM
c) 50GB Storage

H) Forwardinﬁ principle:

1. shortest delay path, it can be MRC, OSPF, etc.
H) Results:
1 Mon1tor1nﬁ network performance:
a) Throughput
b) pelay
c) Jitter

d) Packet Loss
2. At controller
a) Packet-In
b) Qos violated flow

]

1) Command: pythen ﬁ) {namte .dynamite DW
samples.pretty_log og evel --scheme=SPD -

7 VIS e

The experimental platform as I told you will be using the Google cloud and so this
particular Google cloud instance we are using so, with the CPU - Intel Skylake - 2 virtual
CPUs, RAM 7.5 GB and 50 GB storage and the forwarding principle will be using the
shortest delay path, you could use any other routing algorithm you as well like your open
shortest path first protocol or MRC or any other routing information protocol reap or

whatever you want.

So, for just example sake we are going to show you the shortest delay path and you know
how it is going to forward the packets from 1 point to another. So, these packets are
basically routing traffic packets that we are talking about. The results that we are going
to show you are basically the ones which will take care of network performance
monitoring, with respect to throughput, delay, and jitter (basically the rate of change of

delay with respect to time).

So, jitter, packet loss are some of the standard network performance monitoring
parameters and these will be used, also for at the controller in the packet- in; that means,
the number of packets that are coming to the controller and the QoS violations that are

there. So, all of these will be measured and will be shown.

(Refer Slide Time: 26:30)

o S & _——ee——————— -
} ' a) CPU - Intel Skylake - 2 virtual CPUs
b) 7.5GB RAM

¢) 50GB Storage

H) Farwardinﬁ principle:

1. shortest delay path, it can be MRC, OSPF, etc.
H) Results:
1. Monitorinﬁ network performance:
a) Throughput
b) pelay
¢) Jitter

d) Packet Loss
2. At controller
a) Packet-In
" b) Qos violated flow

1) Command: python pox.py d¥namite.dynamite openflow.discovery
samples.pretty_log log.level --scheme=SPD --DEBUG

‘TR e 4L e BD

RO, -] e, T

So, if you are talking about a research paper then basically you plot these network
parameters, you show how these network parameters very with respect to time and. So,
this is the command that you are going to use in order to execute this particular protocol
that we are going to show and it is performance. So, this is this particular command that

we are going to use.

(Refer Slide Time: 26:57)

6_€d-wiih-Ubuntu-16, 04-xenial
pox
| List

B B B R e S

Eeiciol [T Y

So, let us now go to this particular window and let us show you how things are going to

work. So, as professor Misra mentioned that we will be using the Mininet emulator to

creating the network topology using Barabasi Albert and we use the POX controller to
control the switches and we are using open flow 1.1. As Mininet supports 1.1, it does not
support 1.2 or 1.3. So, we will be using open flow version 1.1. So, in left side window
we have the pox controller terminal and in the right side we have the Mininet topology

terminal.

So, first we have to enable the POX controller so that it can listen to the switches. So, I
will use some command. So, this is the command that we have written a code according
to the requirements like the shortest delay path, will be running and executing the Python
program, “python pox.py” which will enable all the modules of POX controller. Then we
have the design scheme then open flow dot discovery so, that it can listen to all the
switches whichever is been discovered. And finally, we have enabled the debugging
method. So, let me run this command so, you can see the open flow is listening on port
number 6633 and it is the local controller so that is why we do not have any external IP

address.

Now, the POX controller is listening. So, after enabling the pox controller we will
emulate the network using Mininet. So, for that we have the specific command that
“sudo python __ .py” we have created a particular script to create the topology as well

as to generate the traffic.

(Refer Slide Time: 29:09)

So, after emulating the network, you have created the network using Barabasi Albert
topology and the pox controller listening to the switches that is why you can see that
open flow dot discovery, discover different switches, the link detected, the switches
detected. If I go up at the pox controller side you will see that different links are detected

and these are the switches which are connected to the POX controller.

(Refer Slide Time: 29:34)

alling flow

nect [00

alling flow

Now after creating the topology, the topology is stable and it is connected to the POX
controller now using the command gen, I will generate the traffic. So, writing gen means
it is enabling to generate the IoT traffic which we have defined, we have written in the

script. So, if I place on gen then it is going to generate the 10T traffics.

(Refer Slide Time: 30:18)

Caleulating DynamiTE pat

Packst-in for UDF flow frem
0: 42083 to 10.0.0,1:5683

Caleulating DynamiTE path from 10
|

Packet-in for UDF flow frem 1

0:42083 to 10.0.0,1:5683

| Caleulating DynamiTE path from
1
Packst-in for UDF flov frem
149515 to 10.0.0.1:5683
Caleulating DynamiTE path from 5 te
1
| Packet-in for UDF flew
149515 to 10.0.0.1:5683
| Caleulating DynamiTE pa
1
Packet-in for UDF flew
515 te 10,0.0.1:5683
| Caleulating DynamiTE path from
1
I Packet-in for UDF flow from
149515 to 10.0.0.1:5683
| Caleulating DynamiTE path from 5
1
Packat-in for UDF flow frem
149515 to 10.0.0.1:5683
Caleulating DynamiTE path from
1
| Packet-in for UDF [low frem 10
133839 to 10.0.0.3:5683
Caleulating DynamiTE path from I t
3

|7) [s ; ; Ee A4S AR B
- L

So, we have emulated the traffic for 100 seconds; that means, for 100 seconds it will
generate few number of flows. So, a flow is a stream of packets; that means, we have
generating few number of flows, but number of packets are in the order of 1000. So, in
the left hand side at the pox controller you can see a packet in for UDP flows packet in
for TCP flow. So, different packet flows are generated and the pox controller receives the
packet in messages. So, just let us wait for some time to complete the experiment and

then we will show you the results.

(Refer Slide Time: 31:09)

o [fFint
Packat-in for TCP flow feom 10.0.0.1 |}/ hom
te 10.0.0

| I flow from
19000 to 10.0.0.10:5340:
culated path: [3, 4, 10]
Packat-in for TCP flow frosm 10.0.0.3
15000 to 10.0.0.10:53402
caloulated pat?
Packst-in for
138788 to 10.0.0.1:%000

Calculated path: (8, 2, 3, 1]
| Packet-in for TCF flow frem 10.0.0
19000 ts 10.0.0.8

Calculated

Packat-in
15000 te 10.0.0.2: 38788

caloulated path

Packet-in for
15000 ta 1€

Caleulated pal

| Packat-in for TCP flow frem 10.0.0.1 ffy

5000 to 10.0.0.2:38788

caloulated path: [3, 2]

Packet-in for TCF flow frem 1
148638 to 10.0.0.3:%000

Caleulated path: [4, 3]

Packat-in for I flow from 10.0.0.3

| caloulated path: [3, 4]

‘PPRTE AL SO ED

So, all the traffics are generated, the flows are generated and you can see the finish on
UDP ports of different ports are generated as source. So, we have completed the traffic

generation.

(Refer Slide Time: 31:23)

Calculated path: [1, 3, 2] o' E
| Packat-in for TCP flow frem 10.0.0.1 [lrunct
5000 to 10.0.0.8:51026

19000 to 10.0,0.2:38788

Packat-1n for

4BE
Calculatsd pa
Packst-in for
15000 to 10.0.0.4:48638

Bl el N T

So, let us quit the Mininet emulator. So, in the left hand side you can see at the POX
controller it is detected that the switches are disconnecting so, disconnected with the

switch id number. Now let us show you the results.

(Refer Slide Time: 31:39)

Calculated pat
Packst-in for TCI
19000 to 10.0.0.8:51026
Caleulated path: [1,
Packst-in for TOF flew 0.0.0.1
15000 teo 10.0.0.2: 38788
caloulated path: [3, 2]
| | Packet-in for TCP flow [rem 10.0.0.4 feustom tof
148638 to 10.0.0.3: %000
ted pal
in for TCP
15000 to 10.0.0.4: 48638
tad

So, here you can see at the Mininet emulator a log is generated which contains the
different network performance matrix. So, let me decode it so as we have generated the
traffic using D-ITG generator. So, we have to use this command ITG Decode. So, the

command is “ITGDec __ .log” (lig file name).

(Refer Slide Time: 32:24)

od path: [1, 3, 7] [
n for TCP flow fres 10.0.0.1
15000 to 10.0.0.8:510

19000 to 10.0.0.2:38788

0.0.0.4:40638

5 V(31 M B B A i i

So, it is just compiling the entire thing. Now at the end you can see, we have generated
the total number of flows which is 24, total time is 50 seconds. So, although we have
defined 100 seconds within 50 seconds all flows are generated and routed in the network.
And as I have mentioned the total number of packets is in the order of 1000s so, for 24

flows the total number of packets are generated 74,150.

And we can see different things like what is the average delay, that is 218 milliseconds,
then average jitter which is 18 millisecond and then we have the average bit rate which is
the throughput. So, we have got 4578 kbps and finally, at the end you can see average
number of packets dropped which is 1.85 percent, which is very minimal. So, you can
design your own benchmark and you can experiment it and accordingly you can measure
the network performance. At the POX controller let us see what happened. I am exiting

the POX controller.

(Refer Slide Time: 33:50)

(3 T+ ¥ 2 #4557 # & 8 -0-T N

So, where we have stored the results let us see what we have obtained. So, “cat stats
1.log”, we have generated this one. So, let me check what we have got here. So, total
number of IP packet we have received 277. So, number of UDP packet we have received
202 because typical as Professor Misra mentioned that typically in [oT scenario you have
UDP flows. So, that is why we have counted the UDP packet also and number of UDP
flows is 24.

So, in the left right hand side you can see the number of flows is also generated which is
24, number of QoS violated UDP flow which is 0. So, although we have 74,150 packets
in the network, but we have got only 277 packet in messages at the controller end. That
means, according to the flow rules multiple number of packets which are matched with
the flow rule eventually forwarded to the destination without generating the packet at the

controller rate.

So, this is a small demo we have shown to you, so that you can emulate the IoT traffic
and you can a monitor the network performance, also you can phase the real data which
are coming from the sensors to the network and you can deploy your own routing
algorithm using the SDN controller in the real time to have, let us say, minimize delay or

minimum loss or, let us say, that we want to have the maximize the network efficiency.

(Refer Slide Time: 35:47)

—

References

1.Wan, 5. Tang, Z. Shu, D. Li, 5. Wang, M. Imran, A, V. Vasilakos, "Software-defined industrial
Internet of Things in the context of industry 4.0", IEEE Sensors J., vol. 16, no. 20, pp. 7373-
7380, Oct. 2016.

¢ # M. Baddeley, R. Nejabati, G, Oikenomou, S. Gormus, M. Sooriyabandara, and D. Simeonidou,
| "Isolating SDN Control Traffic with Layer-2 Slicing in GliS_C_HP Industrial oT Networks”, in Proc.
1 of the IEEE Conference on NFV-SDN, 2017, ' T e
XL, D. L, J. Wan, C. Liu, and M. Imran, “Adaptive transmission optimization in sdn-based
industrial internet of things with edge computing,” IEEE Internet of Things Journal, 2018.

5. Al-Rubaye, E. Kadhum, Q. Ni, A. Anpalagan, "Industrial Internet of Things Driven by SDN
Platform for Smart Grid Resiliency”, IEEE Internet of Things Journal, 2017.

N NPTEL ONLINE L A
IIT KHARAGPUR CERTIFICATION COURSES

Industry 4.0 and Industrial Internet of Thinas
39 o MW

So, with this we come to end and this is a list of different references for you to go
through further on IIoT and software defined IloT. These references will give you a
better idea about the different solutions and the different initiatives that are in place. This
particular literature I would encourage you to go through in order to understand the
6TiSCH architecture and it is adoption for industrial IoT scenarios and how you could
have the SDN enabled for the 6TiSCH architecture for IIoT. So, with this we come to an

end of the entire lectures on software defined networks for IloT.

Thank you.

