
Hardware Security
Prof. Debdeep Mukhopadhyay

Department of Computer Science and Engineering
Indian Institute of Technology, Kharagpur

Lecture – 09
Advance Encryption Standard (AES) and Side Channel Analysis

So welcome back, so today we shall be trying to understand about or looking into more

details about the Advanced Encryption Standard, which we started to discussed in the

last class. And, we shall also talks upon the definition of side channel analysis which is

so important for hardware cryptography.

(Refer Slide Time: 00:31)

So, the concepts that we shall be covering in today’s class is that we shall be trying to

look into the AES blocks. So, we shall be trying to go through the definitions of the

various round operations in AES and in this context are very important algebra which we

need to look into is what is called as GF 2 algebra or Galois field 2 algebra, where we

will trying to look into how modular arithmetic is done in characteristic 2 fields; so and

finally will be trying to conclude with some challenges on Cipher implementations.
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So, just to begin with binary fields or binary finite fields essentially are essentially are

finite fields which has got which is denoted, for example by the set S and there are two

commutative operators which are define. So, it is typically denoted by set dot and a plus.

So, a dot is of an it kind of realize as a multiplication and a plus is with additions, but

essentially they can the definitions can be you know like varied and the definitions are

just indicative of this of 2 operations.

So, so therefore right you can basically take 2 elements in this field and you can you

know like add subtract and multiply and you can also divide by any non zero element ok.

So  therefore,  idea  is  that  every  element  here  which  is  non  zero  should  have  a

multiplicative  inverse  and  therefore  you  should  be  able  to  multiply  with  the

multiplicative  inverse.  And there is  another  a  very important  rule  which is  called  as

distribution, so the multiplication will should distribute over addition ok. So therefore,

right in binary finite fields which is the very I mean the smallest form of the binary finite

field will typically have only 2 elements which is 0 and 1 and that is also called as GF 2

or Galois field 2 ok. So, this is usually called as Galois field 2 or GF 2.

Now, there is an extension of this field which is called as GF 2 power of m, which is

essentially nothing but an m bit extension of GF 2. So therefore, here the 2 to the power

of  m is  often the number of  elements  in  S and I  the you know like why it  is  very

important  to  study you know like  GF 2  based arithmetic  or  GF 2  based algebra,  is



because  of  the  fact  that  various  cryptographic  algorithms;  like  for  example,  AES is

reliant or constructed using binary finite fields and partially it is done because of it is

efficiency like you know that.  If  you for example,  have a GF 2 arithmetic  then you

basically can have only a single bit to indicate that data you can either be it can be either

be 0 or it can be either be 1.

GF 2 power of m element can be realized likewise by an m bit register and therefore you

essentially have a very compact representation of an element in this finite field. So, and

also right as we will we will study is that when you add as we have also started in our

previous  discussions  is  that  when  you  have  got  GF  2  arithmetic  then  many  of  the

underlying arithmetic becomes efficient becomes implementation.

For example, if you remember you know like when we are doing addition then GF 2 base

additions can be done only by exclusive odds ok. Likewise a squaring was very easy to

implement you just needed to interpose 0 in between and you essentially had this basic

squaring done right. Of course, you have to do the final modular reduction and also the

final modular reduction when you are doing a modular with an irreducible polynomial

can also very efficiently be replaced would be realized by only using exclusive or’s ok.

So  therefore,  write  binary  finite  field  bit  circuits  are  amenable  to  efficient

implementations  and that  is  also one of the reasons why we have got  very efficient

architectures for the AES algorithm.
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So therefore, write I mean if you really want to understand again I will be deserting to

the stick diagram which I cited in my last class ok. So, if I want to for example, you

know like look into this then there are certain weird things which happens in GF 2 based

arithmetic which we have tried we have which we have to get used to works ok. For

example, suppose if I ask you right how what is X plus X ok, so the usual answer could

be 2 X right. But in Galois field arithmetic when you are doing X plus X since the plus is

nothing but exclusive or you essentially have 0 ok, so that is the very weird result which

you get.

(Refer Slide Time: 04:41)

So, likewise right I mean there are certain things which will which will change when you

are essentially doing it algebra in GF 2 arithmetic. So, it is it is important to get used to

this difference in algebra, for example if I ask you to calculate x plus 1 squared the usual

answer is x squared plus 2 x plus 1, but if when you are doing in GF 2 then this 2 x is 0

ok, so because 2 is 0 because you are doing modulo 2 arithmetic. So therefore, the result

will be x squared plus 1 ok. So therefore, x plus 1 whole square is nothing, but x squared

plus 1 likewise x plus 1 whole to the power of 4 will be not only x to the power of 4 plus

1.
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So therefore, right I mean the things will change slightly, therefore in the in the old ways

when we are for example having you know when we are doing our computations you

know like then essentially what happens is that suppose you are doing you know like say

multiplication of 2 polynomials or if you are adding 2 polynomials right, then typically

the things keep on increasing ok. But when you are essentially operating on finite fields

as  the  name suggests  it  is  finite,  you  have  to  do  something  is  called  as  a  modular

operation  right.  So,  that  the essentially  the field  essentially  has got finite  number of

elements.

So therefore, right usually as we have also discussed probably previously is that usually

these elements of the field or the finite field are represented as polynomials ok. So, these

polynomials are the x and the coefficients are part of the polynomial are taken in the base

field. That means, like if I take a field of GF 2 to the power of m then an element in GF 2

to the power of m can be represented by an m bit register or equivalently in terms of

polynomial it can be represented by a polynomial of degree m minus 1 ok. So, therefore,

it can be increase from the degree can be from a constant term 2 m minus 1 and the

coefficients of the polynomial are elements of GF 2, that means they can be either 0 or

they can be either 1.

So, when you want to operate on 2 such polynomials and suppose you want to multiply 2

such polynomials there is always a chance that the degree you will exceed m minus 1



right. So, if you want to bring it back to the field therefore you need to do an modulo

operation and the modulo operation is done usually by applying or taking an irreducible

polynomial  which has got degree of m. And therefore once you do a reduction;  that

means, you divide it and take the remainder that means you take the resultant polynomial

divide by this irreducible polynomial which has got degree of x of m then that you would

imply the remainder has always degree which is less than m ok. That means, the degree

as  the  degree  of  the  remainder  is  always  maximum  m  minus  1  and  therefore  the

remainder belongs to the field.

So, if you understand this right essentially you are basically understood the crux of GF 2

arithmetic  or finite field in general.  So, what essentially  for example,  you know like

when you are so there are small differences right as I said which we have to get used to.

For example, right if in the old way right when you are doing a computation, suppose

you are doing a computation, like you know like in the old way the coefficients could be

as big as possible. Suppose when you are doing some arithmetic I have got a coefficient

when you say 123 x square plus 45 x square plus 678 x plus 9 x plus 10, so therefore,

you can see that in all the way right or usual algebra we essentially often see huge or

large number of coefficients.

But in the new way that means, when you are doing these computations here you have to

reduce these coefficients ok. So, you have to reduce this coefficient GF 2 that means, if

you for example do it or reduce it here or apply it here then 168 will be 0 because, that is

an even number 687 will be odd so it is 1 likewise 10 will be 0 ok. So, if therefore, you

will be left with only x.

So therefore, the in the in this you know in this algebra you will always have terms like x

square plus 1 or x square xor 1 also alternatively as it is written or we will have x square

and so on ok. So for example, here if I want to do say x squared, so here as it is shown

here right I mean you can see that I have got 123 x squared. So, the 123 x square is being

written as x square that is 1 into x square, likewise 45 x square is nothing but 1 into x

square 678 x is you know like 678 x as you can understand this is an even number, so

therefore this should be it should go away ok.

A 9 x plus 10 will be again x plus 1 because this is essentially your odd number ok. So,

so  likewise  you  can  do  this  simplification  and  finally  you  will  be  left  with  small



coefficients. So, finally here you have got only say you know like small coefficients then

the coefficients belong to either 0 or 1. So, one important observation is also that in the

new way or the new definition addition is same as subtractions. So, therefore if you are

doing say x xor x that is same as doing x minus x and that is 0. So therefore, addition and

subtraction are same in both the cases they are equivalent.

(Refer Slide Time: 09:37)

So therefore, write here these arithmetic is often understood by a clock arithmetic. So, it

is a it is basically modular arithmetic for example, there is 4 o clock if I add 10 hours

then we will say it is 2 o’ clock because, we are doing implicitly a modular 12 operation

ok. So, likewise right when you are this is essentially called as modular addition and you

know like in typically we also call that as developing a special group which is called as a

finite field.
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So,  therefore,  right  it  is  so  we  can  probably  take  this  example  to  understand  the

advantage of such kind of modular  operations,  suppose I  take a polynomial  x to the

power of 7 plus x to the power of 5 plus x cube plus x note that this polynomial is in GF

2 to the power of 8. Because, as I said that when you consider GF 2 to the power of 8

then that would imply a polynomial which has got a degree of maximum 7 and therefore

this belongs to GF 2 to the power of 8.

Let me take another polynomial in GF 2 to the power of 8 say x to the power of 6 plus x

to the power of 4 plus x squared plus 1 and then my multiply them if I multiply them of

course, I will get terms which is which has got degrees say 7 plus 6 that is x power of 13.

Now you can see that this final result right is quite big, so for example I have got x to the

power 13 plus 2 x to the power of 11 plus 3 x to the power of 9 and 17 plus x. So

therefore, when you are doing modular arithmetic we would like to reduce it and bring it

back to the field. And therefore you need a polynomial which is called as an irreducible

polynomial and the other thing which you also need to ensure is that these coefficients

are in GF 2.
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So therefore, what we do is that we try to you know like take a polynomial for example,

a usual polynomial here would be say x to the power of 8 plus x to the power of 4 plus x

to the power of 3 plus x plus 1 and then we want to ensure that the result is brought back

to the field. So, again to understand how we do this modular operation let us take a very

simple operation ok, let me take a b x where b x is nothing but b 7 x to the power of 7

plus b 6 x to the power of 6 plus b 5 x to the power of 5 plus b 4 x to the power of 4 plus

b 3 x to the power of 3 plus b 2 x square plus b 1 x plus b 0 and then I multiplied with x.

Note that if b 7 is 1 then I get b 7 x to the power of 8, now the moment I get b 7 x to the

power of 8 I know that this element does not belong to the field because, it takes the

degree exceeds 7. So therefore, we have to basically make it smaller and we have to

bring it  back to the field and therefore the usual way of doing that is by taking this

polynomial and being dividing by this polynomial which is m x x to the power of 8 plus

x to the power of 4 plus x to the power of 3 plus x plus 1 now this is an irreducible

polynomial ok.
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So, what I do is that this is something like I do a modular arithmetic like what we do in

modular arithmetic, here also when we work with polynomials we do exactly the same.

So, I take this polynomial divide the by this polynomial and I get the remainder the final

remainder is being shown here and this remainder essentially belongs to the field ok.

(Refer Slide Time: 12:49)

.

So therefore, the object the final the why it belongs to the field because, you can see that

the maximum degree here is 7 ok, therefore this belongs to the field. So, therefore, right I

mean so therefore you know like what you can do is that rather you know like, I mean



rather working with polynomials when you are trying to think about implementations a

better way is to realize that is in the form of register.

So, what you can probably do is that suppose I have got a polynomial like x to the power

of 4 plus x to the power of 3 plus x plus 1 I can represent them by a polynomial by a

register which has got 8 elements ok. For example, here the elements would be 0 here

because this degree is 0 here it does it is not there in this particular element, likewise x to

the power of 6 will have a coefficient of 0 x to the power of 5 will have a coefficient of 0

x to the power of 4 will have a coefficient of 1.

Likewise we will have x cube plus 0 x squared plus 1 x plus 1 ok. So therefore, this

number is nothing but 0 0 0 1 and that therefore in hexadecimal I can denoted it as 1 and

here I have got 1 0 1 1 in hexadecimal this is b ok. So therefore, right I can actually

represent this by a single byte 1 byte which is denoted by this  hexadecimal notation

which is 1 b, so therefore 1 b also stands for this polynomial. So therefore, what we will

probably try to write now is that we will try to work with say these numbers 1 b and

when we are operating with 1 b whether we are multiplying adding write will basically

implicitly we will be doing finite field operations. But this gives a very nice compact

representation of GF 2 power of 8 element.
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So therefore,  right  when we are trying to  say you know like when we are trying to

construct a field a very important property of being a field is that every nonzero element



should have a multiplicative inverse, that means suppose if I give you this one b which is

essentially  standing  for  this  polynomial  there  should  be  an  element  with  which  if  I

multiply  I  get  back the multiplicative  unity which is  1 ok,  which is  nothing but  the

polynomial with one single constant that is one. So therefore, right I should be able to

find out this corresponding element which I if I multiply I should get back a 1 ok.

There are different ways as we have started in the last class of computing multiplicative

inverses you can apply Euclidean algorithm or any other algorithm for that matter, but

you should also understand that when you are you know like realizing it for a small field

like for a AES which is realized on GF 2 power of 8 arithmetic, you do not need to apply

the very general algorithm for computing the inverse ok.

So,  one  very  nice  way  would  be  let  me  store  all  the  inverses,  let  me  store  all  the

multiplicative inverses for non 0 elements and that would mean that I need only 255

storages right. Because, I need storages for 255 elements and I can get the corresponding

inverse in order one time right, I can just get directly the inverse and I can do that with a

small amount of storage.

(Refer Slide Time: 15:43)

So, therefore, right I mean let us try to understand how the substitution box or the s box

of  AES  looks  like  ok.  So,  if  you  have  understood  how  do  or  rather  the  idea  of

multiplicative inverse then the representation of the s box becomes very easy. So, what

you do here is by 2 steps so therefore, suppose that in the s box you essentially have an



input a and if I apply g of a then I get a inverse which is the multiplicative inverse and

likewise  the  next  step  which  you  do  after  computing  g  a  is  to  apply  an  affine

transformation.

So, the affine transformation is done by taking the result of a inverse which is denoted as

a 7 to a 0, note that this registered stands for an element in GF 2 to the power of 8 and

then I apply a matrix I pre multiply with the matrix which is fixed and then I add another

matrix ok. So therefore, I get you know like a corresponding result and therefore the final

result  is  essentially  the  corresponding  output  of  this  affine  transformation.  So,  for

example therefore, if I want to calculate says the x box of 5 8, so note that 5 8 stands for

the hexadecimal notation of 5 followed by 8. So, it will be basically 0 1 0 1 that stands

for 5 and likewise your 8 will be 1 0 0 0 so 1 triple 0.

So therefore,  if I take this then first I will calculate the multiplicative inverse of this

which is essentially here 1 8 and you can calculate that if I multiply 5 8 with 1 8 and then

apply the modular  polynomial  that  modular  polynomial  which is  essentially  x to the

power of 8 plus x to the power of 4 plus x to the power of 3 plus x plus 1 then I should

get  back  one  I  should  get  back  one  here  and  finally  right  I  apply  that  the  affine

transformation which is shown by this matrix plus this vector and then I get the result

which is 6 a, so that means, 5 8 we will get mapped into 6 a.

So, this mapping is predetermined in case of AES, that means this s box either you can

you know like pre calculate this and store in the form of a table and the size of the table

as you can easily understand will be our dimension 256 because, there are 2 to the power

of 8 possible inputs that you can give to this s box it operates on 1 byte of information.
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Mix column is probably the more you know like complicated step where you basically

take you know like each of these columns. So, in AES as I say that in AES 128 a state is

represented as in this form so it is represented as a matrix; so, this matrix has got 16

bytes ok. So, you can either visualize them as sixteen bytes or you can visualize them to

be made of 4 columns and each column has got dimension of 32 bits or 4 bytes. So, in

mix columns what you do is you take one of these columns and you transform them and

get  another  output  column and how do you do this  transformation  is  by  taking this

column and writing them as another matrix a x or another polynomial say a x, but a x

now has got elements such that you know like I can write ax as a 3 x to the power of 3

plus a 2 x square plus a 1 x plus a 0, note that all these coefficients a 0 a one a 2 and a 3

now belongs to GF 2 power of 8.

And now what  I  do is  that  I  multiply it  with a fixed polynomial  which is  a special

polynomial and then I take modulo x to the power of 4 plus 1 ok. Note that x to the

power of 4 plus 1 is not an irreducible polynomial in this field and therefore all elements

will not have multiplicative inverse. But at the same time if I want to apply you know to

get  the decryption  I  need to  ensure  that  this  special  polynomial  has  a  multiplicative

inverse ok. So therefore, it indeed happens right that for this particular polynomial or

reducible polynomial this polynomial has a multiplicative inverse and therefore right we

can apply a decryption process.



So, in the encryption step what we do is that we take this polynomial, we multiply it with

this special polynomial and then apply modulo x to the power of 4 plus 1 to get another

result which essentially. Also will therefore, have you know like can be represent it as

shown here x cube with you know like degrees like x cube x square x and constant term

where the coefficients are as shown here 2 a 3 plus a 2 plus a 1 plus 3 a 0 for x square it

will be 3 a 3 plus 2 a 2 plus a 1 plus a 0 likewise for x it will be a 3 plus 3 a 2 plus 2 a 1

plus a 0. Note that these operations like 2 a 3 3 a 0 they are done in GF 2 power of 8 they

are not integer multiplications ok.

So  therefore,  when  you  are  doing  2  into  a  3,  that  means  you  are  doing  you  are

multiplying 2 which stands for the polynomial x with a 3 which is the element in g of 2

power of 8. That means, you can represent is a 3 has to be made of you know like a

register which has got 8 you know register of dimension 8 and each of them are 0 1

values  or  you can  imagine  on  them to  be  as  a  polynomial  we just  got  a  degree  of

maximum 7 and therefore when you multiply it with x there is always a term overflow.

The moment there is an overflow again you apply the irreducible polynomial as I said in

the previous slide and you bring the result back to GF 2 power of 8 and finally you

essentially try to compose them and you essentially get this coefficient.

Alternatively there is a very similar simple representation of this transformation which is

done through this mixed column matrix. So, here you take this column which is denoted

as a 3 a 2 a 1 a 0 and imagine that you are basically pre multiplying with this matrix. So,

this matrix essentially has got elements 2 1 1 3 and then there is a cyclic shift of these

elements, you can see that I get 3 2 1 1 1 3 2 1 1 1 3 2 again note that all these elements

belong to GF 2 power of 8. So therefore, the multiplication is done in Galois field 2 to

the power of 8 and finally you get the result which is shown as b 3 b 2 b 1 b 0 which is

nothing, but the transformed column ok. So, you apply this column by column and you

essentially transform the entire state matrix and you get the result after the Mix column

operation.
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So therefore, right let us take again a you know like let us summarize these steps what

we have seen, the first step is the add round key. So, then add round key you take a state

of the AES 128 we have got a key, again this key is nothing but a 16 byte data which is

again represented by this tabular representation where every element is a byte and then

you do an exclusive or this is your key mixing step and you get the final result here this

plus stands for exclusive or when you are doing a bitwise exclusive or.
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Then there was an important step which is called as shift rows, in shift rows you take this

particular state matrix and you will see that in the first row I do not do any shift ok. So

therefore, if the first row is a e i m, I essentially have got a e i m in the output of this

transformation as well. But if you see the next row then for example, b f j n then you will

see that I do a cyclic left rotation ok. So therefore, b comes here f comes here j comes

here and n comes here. So, I do is so cyclic left rotation by 8 bits that means 1 by 1 byte,

for the third row I do a cyclic left rotation but now I do it by 2 bytes. So therefore, you

know like k will come here and so on, so I will get k o c g in this case.

The final row essentially is done again a left rotation but now it is by 3 bytes ok, you can

orderly think of this as a right rotation by one byte as well ok. So therefore, d h l p will

therefore, come here as d will come here h will come here l will come here and p will

come here. So finally, you can also realize that if you want to realize that by a hardware

then you do not need to waste any resource because, you can do this entire mapping by

just wirings you do not need any explicit step for doing this computation you can just do

a  wiring  and  therefore  without  any  resource  you  can  apply  you  can  achieve  this

transformation ok.
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Inverse shift row can be again done the similar way this is just the opposite operation and

which you can again do by a wiring operation.
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Finally, you have got the mixed columns as I say that is for the Mix columns. So, you

basically have to realize this column transformation where you take this column apply

this pre this matrix. So, this matrix is what I just now described, where you have got

elements in GF 2 to the power of 8 and you have to multiply or pre multiply this matrix

with this column to get the final result shown here as capital E capital F capital G and

capital H ok.

(Refer Slide Time: 24:15)



So, likewise I say that the matrix is chosen in a way, so that it has got an inverse and

therefore  this  is  the  corresponding  inverse  which  you  can  see  is  slightly  more

complicated than the forward transformation and then one once you have got this right

you  essentially  can  again  pre  multiply  with  the  result  and  you should  get  back  the

original data.

So, here as you can see that I have taken this input and again got back this, so this give

me back the original data ok. The hardware implementation can be done in a similar way

as the mix columns and we will be studying this in the next class of more specific details

about these implementations.

(Refer Slide Time: 24:49)

Finally as I say the byte substitution or the s box which provides confusion is a non-

linear transformation, so here you do and I find you do an x inverse computation in GF 2

to the power of 8 followed by an affine transformation for 0 as an input.  Then you

assume that 0 is the corresponding inverse of it as the inverse is not defined, we define

we make a special case for that and say that the inverse of 0 is 0 and then I do a final find

transformation on that. And, finally this is the affine matrix as shown here these matrices

are vectors are predefined and pre design and therefore I can define the transformation

for AES s box or by it substitution.
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So finally, what I do is that for example, if I want I can store this in the form of a table.

So, what I can for example suppose my input is 4 2. So, what I do is in that table I have

got you know like a tabular representation where the rows are indexed by numbers from

0 to f and the columns are also indexed from 0 to f.

So therefore, if 4 2 is my input then I see the corresponding row here and I could see the

corresponding column here and therefore 2 c is my result ok. So therefore, I can also

realize this by a nice in a nice tabular representation, although this may not be the best

way of  the implementing  it.  But  at  least  we understand how we can you know like

possibly realize such kind of mapping. So, we will be studying in the next class about

more details about how to realize this s box operation.
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So, talking about like finally our goal is to develop a hardware design, but one of the

very important you know like. So, it basically in the in the classical sense right what we

have discussed in the previous discussion or lecture also that you have got Alice and Bob

and you have got an attacker which is either eve or Mallory or some eavesdropper who is

trying  to  observe  this  communication  channel.  So,  therefore,  what  we  essentially

assumed in the classical sense was that only Alice knows k a only Bob knows K b and

Mallory  has  got  access  to  the  encryption  algorithm  decryption  algorithm  and  the

communication  channel,  but  does  not  know  the  decryption  key  ok.  So,  this  is  the

classical scenario.

But in real life when you have either a hardware design or if you have an embedded

design or you have any implementation for that matter, then the attacker can try to you

know like look into several other information sources and these are what are called as

side channels. So, in the side channels in the real world essentially scanned for those

unintentional  or  even  you  know  like  unintentional  information  leakages  which  can

happen in the real  world and can compromise your secrecy ok, can compromise the

information about the secret key.
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So therefore, there can be several side channel sources ok, so cryptographic algorithms

there are you know like the threat models and the security goal is also important ok, the

protocol is important the software is important whether you are doing a hardware design

is important and finally your deployment and usage is also very crucial and of course you

have the human users and it is almost impossible to design it orderly secure system with

humans in it ok.

But rather right what we will be trying to look into is non those aspects, but more you

know like as we have traditionally been handling only cryptographic algorithms, in this

course we will shall be trying to look into more of you know that the hardware and the

software  leakages.  For  example,  in  software  you can  have  key dependent  variations

computation times and so on which you will try to see how we can exploit  and also

suitably safeguard against and in hardware of course you have got several side channel

sources like power consumptions EM radiations test methodologies behavior under faults

which all can lead to efficient mechanisms of attacks. And, therefore when you want to

really  make  secure  hardware  you  need  to  take  care  of  these  threats  scenarios  and

properly address them.
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So therefore, right the fundamental claim here is that strong cryptographic algorithms are

important,  but they are just  the beginning.  So, it  may you know in this  scenario for

example, take a smart card and take it to a card accepting device have a nice encryption

algorithm. So, when you are just restricted to only input and output exchanges then this

may be safe ok. But in the real world right there may be for example, power supply is it

and that power supply can previously leak the key and therefore right for example like if

you have an if you have studied.

For  example,  RSA algorithm  right  the  RSA algorithm  does  a  square  and  multiply

operation  and  therefore  what  the  happen  is  that  from the  power  consumptions  here

depending upon the glitches or stressing the glitches of the power rail you can probably

infer that the secret key was 0 ok, we are and if the glitch is more or this is more then

you see that probably it is doing an additional step and the additional step is probably a

multiplication and therefore it will give you the secret key you know order n amount of

time you need an amount of time.

So therefore, you are not really challenging the mathematics behind RSA, but you are

just  having  an  very  easy  way  of  getting  the  key,  but  your  target  is  mainly  the

implementation  and  therefore  it  also  ensure  that  our  implementation  should  not  be

efficient as well only, but at the same time also should try to restrict again these kind of

attack vectors.



(Refer Slide Time: 29:43)

So therefore, what are side channels right these are typically covert channels which leak

information  which the  designers  or  the cryptography algorithm did not  consider  and

often you will find that they take place because of optimizations ok. These optimizations

either are done intentionally by us or unintentionally by maybe the compiler or by other

artifacts, which essentially tries to optimize our designs and try to only concentrate on

performance ok.

For example, when you are trying to realize the square and you know an exponential

algorithm which you want for example, for RSA the reason why you have square and

multiply is because of efficiency right you have an if else structure. So, right you ensure

that you get the result in a very efficient manner and that is precisely the thing which

would target inside channels ok.

So therefore, the optimizations are often you know like what are targeted by a right side

channel adversary. So therefore, our optimization should also take care of such threats if

you really one an end to end security



(Refer Slide Time: 30:35)

So therefore,  there are lot  of challenges for a cryptographic designer, it  has to be of

course,  take  care  of  overhead  as  I  said  for  cryptography  the  algorithms  are  very

computationally intensive, if you are talking about symmetric key algorithms there are

large number of rounds it uses non-linear Boolean functions, we needs to be suitably

implemented asymmetric algorithms of an operator large numbers it performs complex

mathematical operations so we need to make them efficiency.

So therefore, they are definitely the usual challenges of performance size and power, but

to make it more interesting you also have to tackle information leakages through go what

channels like side channels and therefore if you really want a secured implementation

you need to have an end to end spectrum of things.



(Refer Slide Time: 31:17)

So, again I would like to stop here and again this is my usual reference for the further for

the for this part of the lecture.

(Refer Slide Time: 31:25)

And what we have essentially discussed today is that we have discussed about AES we

have looked into  the AES steps  like  Addroundkey Byte Substitution  ShiftRows Mix

columns and also the essentially discussed that these sub operations are defined in the

finite field GF 2.



We also discussed about what are side channels and we kind of reflected that if you

really want to have an end to end cryptographic hardware, then you also need to look

into not only performance but also these threats and that essentially we will see in the

following classes of how to slowly address on. We will try to understand not only the

attacks but also how to counter them in the future classes ok, so at this I would like to

thank you for your time.


