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So,  welcome  back.  So,  today  I  like  what  we  have  discussed  about  the  Itoh-Tsujii

inversion  algorithm.  So,  what  we  will  do  today  is  that  we  will  try  to  see  about  a

corresponding hardware architecture for it ok. Like suppose you know like once we have

understood the algorithm, this is a very general problem that we will encountered is that

we have to now translate that algorithm into hardware. So, we have already seen a flavor

of that when we discussed about the GCD algorithm and we thought about how we can

discuss into the data path and the control path so that was an example. So, here is a more

I would say specific case where we are trying to implement a finite field circuit which is

often used in several cryptographic combinations.

(Refer Slide Time: 00:55)

So, to start with right let us so this is what we will discuss today. Like we will discuss

about the hardware design of Itoh-Tsujii, and we will discuss about the performance of

the hardware circuit like how we can choose the parameters, so that the performance is

kept nice ok. So, whether it is optimal in terms of its performance.



(Refer Slide Time: 01:11)

So, to start with here it is a brief recap of the quad Itoh Tsujii inversion algorithm. So, we

have, so in this case I have set n equal to 2, but if you remember we generalized in the

last class where you can make it n equal to 2, 3, 4, or whatever. And but here suppose we

set n equal to 2 then this is the corresponding operation which you had to do. So, if I

want to compute say an inversion in 232, then I need a quad I need an addition chain

until 116 and therefore, right I will essentially do this so that I finally, get alpha 116.

And note also in this case that we had two like in order to obtain the final inversion; we

had two sub cases ok. In the first sub case was when n was dividing n minus 1. And in

this case, when you are talking about 233, then your n minus 1 is 232 and your n is 2. So,

therefore, since 2 divides 232, but we just need to do is square this alpha 116 ok. So,

therefore, right what you can essentially you need to do is a final squaring to get the

inverse. You do not need any other beta value computation to get the inverse that makes

it quite efficient.



(Refer Slide Time: 02:15)

So, what we can do here is that if we again observe the clock cycles just to recapitulate

about that. You have essentially got l plus 1 number of clock cycles, because you have l

minus 2 to do the multiplication to the l minus 2 essentially is what you do here is in this

table,  but then you have got two extra multiplications at the top to calculate this pre

computation plus the extra multiplication to do the squaring that is three multiplications.

So,  therefore,  we  have  got  l  minus  2  plus  3,  so  you  have  got  l  plus  1  number  of

multiplications, so that essentially is the clock cycles accounts for this clock cycle value.

Here l plus 1. And this is this summation is for the remaining parts, where you are doing

u i minus u i minus 1, you are dividing by u s. But note that now we since we are doing

quadding instead of squaring, we also need a corresponding architecture where we do not

have a cascade of squarings, but we have a cascade of quads.



(Refer Slide Time: 03:09)

So, therefore, right I mean here is a corresponding architecture for that. So, let us take

some time to understand how these architecture works. So, again we have got a data path

and we have got a control path. So, you can see that this is my control circuit denoted as

control, whereas this part essentially is my data path. So, in the data path, what are the

two most important operations that we need? Here we need a multiplier, because we have

essentially  we  need  several  multiplication  operations.  So,  we  need  an  optimized

multiplier ok; we need an efficient multiplier.

So, in order to do that we will we can use the Karatsuba multiplier, but we designed in

the last class, and then we also need a quad block. So, how do you realize a quad block?

So, you can observe that when you are doing quadding in GF 2 arithmetic then you are

basically doing squarings followed by squarings ok. So, now, squaring as we discussed

right is a linear operation in GF 2 to the power of m arithmetic ok. So, therefore, right

you can actually realize a squaring operation by just using only XORs, you do not need

any AND gates to realize that ok. Moreover you can if you want to have powers of 2,

like powers of 2 means like 2 squared, 2 cube and so on all of them can be realized as

that ok.

So, basically it is just by using exhaust you can realize it. So, you can actually have a

very efficient architecture for the quad block. And as we discussed right that the quad

block essentially write in terms of delay is kind of equivalent to the squaring circuit ok.



So,  it  is  probably more optimal  or  better  at  least  it  utilizes  the look up tables  more

efficiently.

So, now, we see that we have got the multiplier and there are two inputs to the multiplier,

but the one which we will be choosing like which one which you will say or the data that

you will be sending as an operand to the multiplier is being selected by a multiplexer. So,

there are two multiplexers at the input of the multiplier. And likewise right for the quad

block whatever you want to compute, whatever inverse you want to compute that data is

also being selected by a multiplexer ok. So, you have got three multiplexers here ok.

There are two registers at the output. So, for example, I register the multiplier by using

an amount registered. Likewise I register a quad block and I denote it as Q out. So, note

that in my architecture here, I will be either using a multiplier or I will be using a quad

block ok. So, therefore, in what essentially what I mean to say is that I will be enabling

either this register or I will be enabling this register ok. So, therefore, at any clock cycle,

I will be either calculating this value here, or I will be either using this value, or I will be

using either this value.

So, you can note that the control generates an enable signal, and the enable signal passes

here, but it is toggled here, that means, if it is 1, then it is selecting this register. But if it

is 1, then this is set at 0. Likewise if it 0, then this one is selected, and this one is not

selected  ok.  So,  therefore,  I  am  basically  switching  between  the  multiplier  and  the

inversion ok.

And then if I just want to take a look into my quad block as we have seen in the square at

circuit right, what we will be having here is we will be having a cascade of quad circuits.

So, here again I have got u s quad circuits which I have cascaded all of them are quads

individually. And then there is a multiplexer at the output of these q s stages, that means

like if I if the number of quaddings that I want to do is less than the number of stages

here u s then I can multiplex that that output correspondingly ok.

However, if the number of quaddings is more, then I need to take this output, feed it back

and I need to cycle it. So, I need to spend more than one clock cycles to do that operation

ok. How many clock cycles, exactly as we have seen the number of clock cycles divided

by u s, and I take a c log that ok, so that gives me the approximation of the number of

clock cycles that I will encounter or incurred in that case ok.



So, now once you have essentially understood the data path, so you also need to and also

understand that the data right essentially which you are computing is essentially going

through transition that means you are essentially continuously modifying those data ok.

So, therefore,  the data that you essentially  are encounter or computing on essentially

stored often in the form of a register bank. So, there is a register bank where you have

registers where you are storing them.

Now, the number of registers which you essentially will be having in the register bank

will actually depend upon your choice of the addition chain ok. For example, you will

see  that  in  the  addition  chain,  if  you  need  to  have  you  know  like  when  you  are

calculating the alphas right, and you need to resort or you know you need to take an

alpha  which  previously  was  there  or  previously  was  used  then  that  data  should  be

available right because you do not want again to compute that ok, otherwise the entire

advantage will be lost. So, therefore, that old data needs to be stored in the register bank

and needs  to  be suitably  addressed to  get  that  value ok.  So,  therefore,  that  depends

completely upon their addition chain ok.

(Refer Slide Time: 08:03)

So, now I would like to design the control word. So, if I want to design the control word

this is how what I do here is. So, essentially right what I start doing is I start to you know

like calculate the multiplications and the inversions one by one ok. So, if you remember

right, what we started with was we started with calculating this alpha 1 ok. And alpha 1



was initialized to a cube ok. So, if you remember right alpha one was initialized to a

cube.

So, if you go back right, you will see that alpha 1 was initialized to a cube, a to the power

of 3. So, how we how can we calculate this a to the power of 3 is being elaborate here in

terms of the clock cycle. So, as I said that you are basically spending two clock cycles

here. And what do I do is first, I do a multiplication and then I get the corresponding

result which is a squared. I again feed this back and I calculate a to the power of 3 ok.

So, what I do first is that I first need to ensure that the multiplier here gets a that means,

this select line should select 0 that is why the select 1 is set to 0.

What about this multiplexer? I again need to take this a. So, I again want to make this

select also 0. So, this select is also set to 0. So, now I get a square. So, the select 3 and

the essentially does not matter. So, I have set don’t cares here ok, because what I allow it

to  optimize  more,  because  the  choice  of  these  values  does  not  matter  in  terms  of

functionality. So, I can I should set them as don’t cares. And then finally, write this en is

set to 1 that means, I am essentially using the result of the multiplier  output ok. So,

therefore, I get a square here. And now what I do is that I take this a square and I would

like to feed that back right, because I would like to compute a square multiplied with a.

So, therefore, in the next clock cycle, you will see that select 1 is still set to 0 which

means select 1 being 0, it  takes in a. So, therefore,  this multiplier  has got one of its

operand  as  a  in  the  next  clock  cycle,  whereas  in  the  next  clock  cycle  the  second

multiplexers select line has been set to 2 ok. Now, if it is set to 2, then that means, I am

choosing this line ok. So, I am choosing this line which is nothing but the output which I

have derived from here ok.  So, therefore,  I have got square and if I  am multiplying

squared with a, so I am multiplying a square with a to get a cube. Again you see that the

en is being set to 1, because I am again observing this output ok.

Now, what about alpha 2 a? So, in alpha 2 a again if you observe right if you go back and

see  the  computation  of  alpha  2  a.  You  basically  are  doing  this  you  basically  are

multiplying alpha 1 and you are you are essentially passing alpha 1 and raising it to the

power of 4 and you are multiplying this with alpha 1 ok. So, therefore, that therefore,

alpha 1 needs to be sent to a quad circuit and the result needs to be multiplied with alpha

1. So, therefore, what do I do in the next clock cycle is I essentially raised alpha 1 to the



power of 4 ok. So, therefore, this data I essentially get from the registered bank ok, and

therefore, what I do is that I take this data and I send it to the to the quad block ok.

So, now if you observe here that in this third clock cycle select 1 and select 2 are not

important, because the multiplier is not working here, rather what is important to select

three. So, in select 3 right I have set it to 0 which means right I am getting these data, so

that essentially right I am this is the corresponding data which I am passing it. And this

data essentially is being taken from if you observe this line is being taken from here ok,

so that means, right here I had a cube calculated.

So, this a cube data is directly being fed back to the quad block ok. And once it is being

fed back to the quad block, I need to observe the output in q out. So, therefore, q out

right essentially is where I should get the corresponding output data ok. And therefore,

right I essentially also make q select 1 and I get the corresponding result ok. Likewise

right you will see that the enable signal is set to 0 here because if the enabled signal is set

to 0 here, this being 0, this becomes 1.

So, therefore, this becomes functional ok. So, in the next clock cycle, that means, in the

clock cycle 4, I will multiply this with a right. So, therefore, what I have to do is, I have

to take this and I have to multiply this back. So, therefore, what I do here now is again I

get I activate my select 1 and select 2 signals. So, therefore, I activate and I make both of

them 1 so; that means, like this ways 1 as well as this is 1. So, you see that if this is 1,

then that means I am getting it from the I am if you observe you trace this back, then I

am getting this from here ok. So, I am getting this from here and the other data I am

getting from the registered bank ok.

So, therefore, I am now multi I am essentially multiplying and I am getting alpha 1 to the

power of 4 and I am multiplying that with alpha 1. So, essentially right we what we have

is. So, if you observe right I mean this is clear right. So, you have got one of the input

from the registered bank, whereas the second input from the multiplexer is actually taken

from the output of the quad block. So, you see that if you follow this line right, then this

essentially is from the quad block ok.

So, therefore, this is the data where you had alpha 1 to the power of 4. So, now, you are

multiplying this with alpha 1 to get the corresponding next output. So, exactly this is

what has been done subsequently. So, you basically again need to calculate alpha 3, you



need to calculate alpha 6, alpha 7 and so on. And essentially finally, alpha 116, so you

can  see  that  in  alpha  116,  you have  to  do  several  quaddings.  So,  you will  see  that

whenever this  is  this  enable signal  is  0 that means,  you are doing the corresponding

quadding ok.

So, you are doing so many quaddings and finally there is a multiplication. For every

section, you see that there are some quaddings followed by a multiplication ok. So, there

is some squaring follow some quaddings followed by a multiplication ok. And finally,

there has to be a squaring that means, the final result has to be squared, and this is done

by a multiplier. So, therefore, again I am selecting 1, selecting 2 setting them to 2, which

means I am essentially taking my prior result and I am just multiplying there ok.

So, again the multiplier enable is high, that means, I am using the result of the multiplier.

So, you can observe that for all these computations, I have used the multiplier ok. So,

therefore, right what essentially probably is the next thing that we need to think of is that

once we have made a functionally correct design is how do we analyze the performance

of it. So, therefore, the first thing which is important here is to understand what is the

critical path of your circuit ok. And you will see that most often write the critical path

will pass through the multiplier, because the multiplier is the most costly step that you

encountered ok. And anyway right there is one clock cycle or there is one event when

you are doing only a multiplication ok.

So, therefore, the critical path of your design is kind of constrained by the multiplier ok.

So, you need a good multiplier to make your design efficient ok, and that is why we were

starting good multipliers in the previous class. But at the same time it is also important to

realize that how do you design the quad block right essentially should also be taken into

account. So, therefore, if you make a very erratic design of the quad block, then it may

happen that you make your critical path worse than that method of the multiplier so that

should be a criteria for setting the number of cascades that you are doing.
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So, more seriously right that I mean this is a very important step that how do you decide

the  number  of  cascades  and  that  will  essentially  make  your  performance,  make  the

performance or set the performance of your design. For example, if the number of quads

I mean the number of quad circuits, if you denote it as u s, it will have any an influence

of the clock cycles, frequency and area requirements. You can see that if I increase the

number of quad operations, number of in increase the number of cascades, then the area

requirement will increase ok. At the end, at the same time right it will also reduce the

number of clock cycles.

But if you decrease it, then the number of clock cycles with increase, but the area will get

reduced ok. So, there is a trade off. So, suppose you know like there is a quad circuit like

one  quad  circuit  which  will  take  say  l  p  number  of  lookup  tables,  and  there  is  a

combinational delay of say t p ok. So, therefore, right if I want to formalize the number

of if there are u s cascades, then what is the number of lookup tables that we will be

consuming it will be just us u s multiplied by l p and the delay will also be proportional

to us into t p ok.

So, as I said that since your multiplier is a very crucial block, and you do not want to

make the delay what is then that of the multiplier. So, you will ideally like to keep us into

t p less than that of the multiplier critical path ok. At the same time you do not want to

make us very small, because if you make us very small than number of clock cycles will



increase ok. So, therefore, the optimal way of design strategy would be probably to keep

u s in to t p close to that of your multiplier t s slightly less, but not more. So, this is the

criteria that we followed.

(Refer Slide Time: 17:05)

And if  you follow this  you will  see that  and here is  a  plot  to  demonstrate  that,  if  I

increase the number of cascades that you are doing that is u s for example, and if you

implement say the GF 2 to the power out 233 on a vertex-4 FPGA, this is probably how

your graph will look like ok. On the y-axis, I have plotted out the computational time of

the cascaded quad block. And you will see that there is if you make the cascade another

number of cascade steps very small then also the time will be more, because you are

spending more clock cycles. Whereas, if you make it high then also you are spending

more there is a more delay the delay ok. And therefore, there is an optimal point for

which you get more efficient designs. And you will see that the number of cascades here

there is a region like something like 9 to 12, and we set something as 12 for example for

our design ok.
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So, therefore right if you take this and if you want to make or see the performance, you

will see that with properly chosen such design parameters, and if you plot the quad Itoh

Tsuji inversion with the squarer Itoh Tsujii inversion algorithm, you will find out that

therefore all the field sizes ok. So, we these are kind of a plot where on the x-axis, you

have got different field parameters ok. You will see that there is not always a significant

advantage of using the quad with Itoh Tsujii algorithm over the square or Itoh Tsujii

algorithm for LUT based FPGAs ok.

How did we get the performance? So, normally right the way that we basically calculate

the performance is as follows. We divide the frequency, divide the slices and the clock

cycles ok. So, therefore, right what my objective as the designer would be to improve

performance  which  means  that  I  should  be  able  to  optimize  my design  at  a  higher

frequency, that means, the critical path of my design should be small. And also if I want

to increase my performance, a number of clock cycles should be small; and if I want to

improve my performance, my slice requirement should be small.

So, it is a nice tradeoff between the number of resource that we encounter or in use the

number  of  clock cycles  that  you need and also  the  frequency at  which  your  design

operates ok. So, therefore, what we plot here is that performance in terms of different

field size parameters, and we see that for all the field sizes this properly designed quad

Itoh  Tsujii  algorithm  should  give  an  advantage  compared  to  a  squarer  Itoh  Tsujii



algorithm. Of course, right you can get into more details about trying to understand why

quad and why not octet for example ok. And essentially also decide upon the you know

like the corresponding tradeoffs which can encounter because of that. For time purpose, I

will not go into all those tradeoff issues.

(Refer Slide Time: 19:41)

But rather you know like I will redirect you to my to the textbook that we have.

(Refer Slide Time: 19:43)

You will find more details about those tradeoffs in the in the book. And you can read and

try to gather them in the more importantly I will tell you about the performance that we



can say that the inversions will have on say as Xilinx Virtex E. Because it is important as

an engineer to know the figures right like for example, if I ask you like if I take a quad

Itoh-Tsujii algorithm. And if the dimension is say 193, what would be the order of delay

which a hardware will look on say on Xilinx Virtex ok.

So, here the delay is something like 0.55 microsecond ok. So, you can compare it with

probably with the software design. And you will see that there is a significant amount of

advantage which you get when you resort  to hardware designs. In this  case, we also

compare with some other competing designs and show that this design is optimal, but

what is  more important  to understand is that for a properly chosen design and for a

properly  architected  design,  you  essentially  get  and  get  a  significant  amount  of

improvement when you are going into a parallel hardware architecture which is properly

done ok.

(Refer Slide Time: 20:47)

So, with this I will stop here. So, what we studied essentially is a very important finite

field operation in characteristic  2, which is essentially called as a finite field inverse

which is often used in several other computations. We will see them being used largely in

the elliptic curve hardware that we will studying subsequent to this. We discussed about

an  efficient  algorithm  which  is  called  as  Itoh-Tsujii  inversion  algorithm  which  is

essentially relies upon Fermat’s little theorem.



We also generalized it to a version where we can actually do where you can speed up

your  computation.  You  can  also  try  to  use  the  resources  in  the  FPGA much  more

efficiently. And finally, we also discussed about  a  hardware design of  the final  field

inversion algorithm and discussed about the performance issues like how do you choose

the parameters. So, you so that you get an optimal performance of your hardware ok.

Thank you for your for your time. And we will continue our discussions in the next class.


