
Hardware Security
Prof. Debdeep Mukhopadhyay

Department of Computer Science and Engineering
Indian Institute of Technology, Kharagpur

Lecture - 60
Microarchitectural Attacks: Part 3 Row Hammer Attacks (Contd.)

So, welcome back to this class on Hardware Security. So, we shall be continuing our

discussions on Row Hammer Attacks.

(Refer Slide Time: 00:22).

So, we shall we already kind of seen the background behind the attack and today we

shall be seeing the actual attack and also discuss a potential countermeasure.

(Refer Slide Time: 00:29)

So, where we stopped in the last class, where basically determining the LLC slice where

the secret maps. So, we saw how prime and probe can be utilized in this context.

(Refer Slide Time: 00:41)

So, in particular right we already discuss that we basically; so, the experimental setup

that we are considering here is essentially an RSA implementation with 1024 bit

exponent, which basically can reside in 2 cache lines each of 64 bytes. So, you can see

that totally it is 124 bytes or bits, so it can be organized or it basically takes or occupies 2

cache lines where each of them are of 64 bytes, 64 into 8 into 2.

So, so then 11 bits of the physical address is referred to the last level cache set and

essentially gets your corresponding cache set in your and we are considering 4 cores; that

means, we have a mapping to get 4 cores and there are 4 corresponding slices in the

cache memory. So, the corresponding hash functions which essentially has been reverse

engineered in a in a pair work which I mentioned in the last class, essentially are shown

by these two equations.

So, you can see it is a simple linear equation which apparently gives you the

corresponding mapping of the from the physical address bits two bits h 0 and h 1 through

which you can basically index this 4 LLC cache slices. So, now, if so previously right we

had discussed about that we were is basically doing an attack on or trying to basically fix

the corresponding cache set, where there are mk possible values right, for every slice

there are m possible ways and there are cache slices.

So, putting the values here m is 12 because there is (Refer Time: 02:17) that we

considered is 12 and there are 4 slices, so there are 12 into 4 48 data elements. So, we

basically can the moment you fix a cache set there are 48 possible addresses which we

used to prime and probe.

(Refer Slide Time: 02:33)

So, so here is an experiment to show that in it works. So, for example, you see that there

are two graphs which has been shown over here, one which corresponds to the collision

the for example, the blue which corresponds to here collision. That means, the

corresponding cache set which you are basically using two prime and probe is basically

colliding with your secret exponent.

And you can see that if there is an collision; that means, right that is essentially, so when

the spy comes back and probes it basically expects that there should be an increase in the

average time and that is what you can observe here. Since there is a collision you find

that the average cache access time has been increased and therefore, the spy is able to

understand the correct cache set, where the secret exponent is getting mapped to.

So, the sets are chosen such that one of them is having a collision with the secret

exponent and the other set does not have any collision. The average access time of these

two sets during the probe phase when you are coming and probing, you are seeing a

differentiating by approximately by 80 clock cycles. So, we shows that there is a

significant discrepancy between these two timings and basic any kind of leaks

information about the LLC mapping of your secret exponent. But remember that at this

point we basically have kind of still 12 into 8 48 possible address locations, 12 into 4 48

possible address locations.

(Refer Slide Time: 04:06)

You can actually make this more concentrated by getting in the slice. So, you can use

those two hash functions, to basically also kind of get mapped into not only m into k, but

get into one slice so; that means, in one slice for cache set there are m possible ways. So,

therefore, here is an example where you are considering 2 slices, so just to understand

that whether you are correctly understanding the slice for example.

So, for example, in this case in figure a the secret is mapped into LLC slice 0, while in

figure b the secret gets mapped into LLC slice 2 and you can see that when it is

essentially getting mapped into slice 0, then slice 0 is indeed we are taking more time

corresponding to slice 2.

Whereas, in this case the secret gets mapped into the LLC slice 2 and therefore, the

probing phase indeed tells that the mapping for slice 2 is taking more time and therefore,

you are correctly able to understand the slice and that in the way says that the reverse

engineering for the hash functions for the slice computations are working as expected.

So, in both the figures the access time for the cache slice where secret access is collide is

observed higher than the other slice belonging to the same set, but for no cache collision.

So; that means, right previously you had an ambiguity about the, you know like when

you are considering or in the previous case we had 4 slices.

So, for a given cache set right we had all these things in my eviction set and now if you

can understand the slice also then you have just possible m possible ambiguities. So, it

from m k you can reduce the ambiguity to m possible options.

(Refer Slide Time: 05:53)

So therefore, right I mean what you can do is improve it; so therefore, you can pinpoint

the target LLC slice. And the adversary identifies target LLC slice by iteratively running

prime and probe protocol separately for each k slices with the selected m elements for

that particular slice. The timing observations while probing will show significant

variation for a set of m elements which corresponds to the same slice where the secret

maps and thus we further define the size of eviction set from m into k to only m

possibilities.

(Refer Slide Time: 06:24)

So, here is another alternative hash function which was presented in a following work

and if you use it right then apparently you can get a better separation, but so; that means,

right you can actually use potentially few options and essentially it works either or. So,

essentially you can take any one of them as a possible representation of the

corresponding mapping.

(Refer Slide Time: 06:53)

So, now you have to basically get into the actual attack, but for the actual attack you also

need to kind of determine the DRAM bank where the secret maps. So, the objective of

the eviction determination was for the cache set eviction detection was basically to

ensure that the decryption when you are doing the decryption.

Then you are basically accessing the DRAM, but now you have to do the actual row

hammer which means you have to basically ensure that when you start accessing again

and again in a very repeated manner, then you basically access the bank where the secret

essentially getting is getting map to.

So, now; so, in the first phase of the attack you basically kind of restrict the attacker to

go to the DRAM bank, but now you also have to go to the same DRAM bank and do the

row hammering operation. So, you need to do this reverse engineering.

(Refer Slide Time: 07:40)

So, therefore, in order to identify the target dram bank. So, we will again use a pair result

which is essentially shown in some of these equations like from again from the physical

address how to get the bank number, how to get the rank number and how to get the

channel number. In particular you see that this is the corresponding way of how to get the

bank number.

So, in our experiment there are 2 channels, there is 1 DIMM per channel, there are 2

ranks per DIMM and there 8 banks per rank. So, we basically finally, want to get into the

bank right and since there are 8 banks you can observe that number of bits which you

have for the banks are 3 ba 0, ba 1 and ba 2. So, therefore, the if you know the physical

address you can calculate the value of ba 0, ba 1 and ba 2 and you can calculate the

corresponding bank numbers for those physical addresses.

So, the objective is that the concurrent, so you want to basically inflict this row

hammering or do the row hammering. So, you have to therefore, concurrently access

basically what you want to do is, you want to develop or do concurrent access to the

different rows in the same dram bank and this will result in a row-buffer conflict as we

discussed, as we have remember the old code that we discussed when we basically where

addressing x and y.

We wanted to access different rows in the bank, the objective is we wanted to kind of

evict the data from the row-buffer. So, that rather than accessing data from the row-

buffer I access the data from the actual rows. So, this is called as a row-buffered conflict

and this will automatically lead to higher access time because if I get the data from the

row-buffer that will take more time.

So, we again use this timing difference to understand, that whether we have been able to

successfully evict the data from the row-buffer and we basically kind of access data from

a different location in the bank or different row in the bank. Now the functions which

decide the channel rank and bank map or bank making from the physical address are not

disclosed typically, but as I said that we are used these equations which have been kind

of published in some prior research works.

And also just to mention here that in a bank there are apparently something like 2 power

of 14 rows. So, it is difficult for us try to get the exact row number in the bank. So, we

basically do not have an handle to get into the row. So, we can basically get to the bank,

but for you know like accessing or getting into the corresponding adjacent rows we

basically have to do repeated attempts and assume that few of them will be successful.

(Refer Slide Time: 10:17)

So, this is the complete elaboration the attack, so in this elaboration right we see that

there is an adversary which initiates the spy process and as I said that you have to again

decide for that eviction said that you know you have to do it every time in situ because

the mapping from the virtual address to the physical address will basically change when

the moment you basically run a different process.

So, therefore, you generate the memory map and you compute the sets slice addressing

from the physical addresses, you compute the channel, the rank, bank indices different

from the physical addresses again by using the equations that we just now discussed. And

then we basically calculate the eviction set C and then you fill this or prime this with

elements mapping to the same LLC set and slice as a secret.

And the idea is that for each bank b in the DRAM for each bank; b each bank. So,

basically as I said that you now from your physical, so which you have basically

obtained by doing page map. You basically can calculate the corresponding bank number

using the equations ba 0, ba 1 and ba; 2 ba 0 and ba 1 and ba 2, you can get the

corresponding bank numbers there are 8 impossible banks. So, you basically start

targeting one of the bank for example, say the bank 0.

So, in bank 0 if we target bank 0 in that DRAM, you basically prime the LLC by

accessing this elements in the c, so, basically now you start that actual attack. So, now

after you have done this homework you may the moment you start you basically start

your attack by fixing a corresponding bank numbers say bank 0 and then you basically

prime the last level cache by accessing elements in your eviction set.

And then you basically the adversary or allow the adversary to or the adversary basically

sells or triggers the description and note that since you already understood the eviction

set previously, when the secret exponent runs since you have you are staying in the same

eviction set or in the same footprint of the of the cache memory. Then that would imply

that this location or this access has to be done from also it we are basically trying and

sure that this essentially is not obtained from the cache, but is done from the actual

DRAM ok.

So, therefore, right you basically do a decryption runs basically decryption runs it is

accessing this two lines as we have discussed, but this access is done not from cache, but

from DRAM because this address space or this eviction set is conflicting with my spy.

The spy has ensured that I have kind of evicted that area, the address from the cache and

therefore, when the decryption is running or executing that content is not available in the

cache

So, now when you basically come to you know like the moment the decryption explain

the after a decryption basically runs. So, in parallel right or in conjunction you basically

access randomly selected data which basically maps to the target bank b. For example

the bank 0 and you basically time your access, so objective is that, now you know that

the decryption is accessing a specific bank and you want that ah as a spy when you are

accessing some locations you are also interested to access in the same back ok, but you

also interested not to access the same row, but maybe some adjacent row ok.

So, how do you know that? So, the idea is that if you access the same row, then you

would get the data from the same row-buffered and therefore, right you will basically

take less time. So, that is why right you would kind of time your access because you can

do that as a spy, you can time your own access. And you assume that if there is a more

time requirement, then you basically are getting data from the row-buffered, but what

you want or what you are interested is in the accesses which basically takes more time

because that essentially is implied that you are accessing in adjusted rows.

So, and also right you after you do this access every time you would apply you know,

you would like to flush or because the moment you make an access the data comes to the

cache and you do not want to access the cache because you are interested to go in to the

DRAM. So, you apply a specific instructions is called CL flush to ensure that this data is

evicted from the cache and again right there will be the access, you are accessing into the

actual DRAM bank and not the cash payment.

And finally, right you get the decrypted message from the decryption engine and this

process is repeated again and again until and unless you are able to create the fault or the

error.

(Refer Slide Time: 15:13)

So, after repeated runs for example, this is the short sets that it took some amount of

time, but you can see that there is an error which has been reported in a specific bank for

example, this has been found in bank 7, where there is a bit flip for example, initial

everything was all f; that means, the entire content was all one, but suddenly there is a bit

flip for which this f has become e.

So, we know that if we are able to create one single flip then that essentially has got

significant consequences if the security of cryptosystems whether it is AES or whether it

is RSI or whether it is any other cryptosystems. And there right this flip right can be

potentially exploited in doing or launching a fault attack for example.

(Refer Slide Time: 16:01)

So, here is for example, the distribution of bit flips that was obtained in our experiments.

So, we have got like from 0 to several banks and we have we observe the bank indices

and you can see that this is programmable codes the number of bit flips. So, you can see

that some of the banks are not really prone to this kind of flips, but some of the banks are

really prone to the kind of bit flips where the incidence of bit flips is more probable

compare to the other. So, this is an interesting statistics that which can be observed.

(Refer Slide Time: 16:28)

So, if we discuss about the attack, so this attack essentially shows that it basically

assumes that the secret decryption exponent resides in a particular location of the DRAM

and is not page swapped by other running process the mean that is not removed away to

the disc for example. And so we can basically this seems to be a quiet practical

assumption in several settings and the access to the page-map as I said is not available at

user privilege, but still in several scenarios you may still find that his enabled there may

be other ways of getting handle on the physical address as well.

And also maybe in some other settings right for example, in a cross VM environment

right I mean where the users of the co located VMs actually have administrator or

privilege you can potentially still use this page map and can if we still try to sort of

conceptualize an attack. And the attacking is original form might be relevant in

customize embedded system of applications where substrates can still be prevalent.

(Refer Slide Time: 17:34)

So, how do you counted this attack? So, one of the very popular technique for preventing

this is published in this work and essentially called as Anvil. The idea of this anvil is that

you resides in the kennel and this basically is a kind of a good usage of performance

counters which we have already seen how we can perform as I said we have we can use

further performance counters as exploits.

But it can also be used for evaluations, it can be used for protection against side channels

or side channel attacks. So, for example performance counters have got are available or

intel sandy bridge and later microarchitectures which can be utilized.

(Refer Slide Time: 18:13)

So, the idea behind this strategy is as I illustrated here. So, you basically have you

monitor the LLC miss rate and try to see that if the miss rate is high enough ok. So, you

basically monitor the last level cache miss count and then you basically sample the LLC

miss addresses and see that whether the misses have got high row and bank locality ok.

So, you can do that, you can sample the misses out of your LLC and then right what you

do is you basically; the moment you basically have the suspect of this you kind of

selectively refresh the rows and that would kind of thought the basic idea behind row

hammers because the row hammers basically are the row hammer (Refer Time: 18:56)

because our access is faster than the refresh cycle. So, if we can refresh it, then it will not

work then therefore we can protect against the attack.

(Refer Slide Time: 19:06)

So, to conclude our discussions overall micro-architecture attacks encompass the

intersection of architectures and computer security. So, we have seen several things and

for example, we have seen the effect of cache memories, bunch predictions. We will not

discuss in details about prefetchers and speculative executions, but this also has got a

significant impact on the overall security. We have seen the effect of out of order

execution for example, when we discussed about the effect of cache memories and then

we discussed about DRAMs with appropriate refresh for example as an important design

criteria.

So, we saw attacks targeting the cache, the branch predictions, the DRAM and more

attacks are emerging as we are discussing and securities getting to be a game changer

and therefore, design for security along with other objectives like performance, power,

energy seems to be very important. And I would also like to make a comment yet that it

seems like, the only one architecture is due retirement is to be, seems to be

fundamentally insecure and it is a good time to think of a clean paper design of a

computer architecture.

So, RISC-V is a good open source platform to experiment and we can actually

potentially do several investigations and may be you know like kind of do investigations

about various and try to think about a clean slide design of with security as an upfront

design criteria.

(Refer Slide Time: 20:32)

So, just to quote you know like for example, the famous Hennessey Patterson in this

context. So, in this discussion on view point published in communication of the ACM,

there was an interesting comment which says that the other thing which we essentially

are getting better at is or which we need to get better at the security. So, far we have

asked much of computer hardware insecurity and I think that architects need to step up

and really help attack this problem. And he says that what is exciting is the RISC-V is

something which is essentially available open source and which we can potentially try to

investigate to develop and implementation or processor architecture with security as an

inbuilt design criteria.

(Refer Slide Time: 21:15)

So, with this is the reference that you can follow for our discussions on Rowhammers.

So, this is the book which is published by Springer and you can get also an access to this

work and several references which has been mentioned in this work. So, with this I

would like to say thank you to you for your attention.

Thanks.

