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Row Hammer Attacks

So, welcome back to this class on Hardware Security. So, we shall be continuing our

discussions on Micro architectural  Attacks  and we shall  be today studying an attack

which is called as Row Hammer Attacks, which is essentially a you know new class of

micro architectural attacks which targets the DRAM. So, like we have seen like previous

attacks  which  targets  the  SRAM or  the  cache  memory, but  this  actually  targets  the

DRAM which is present in our modern day processors.

(Refer Slide Time: 00:41)

So,  the concepts  that  I  will  be covering  are first  we will  take  a  look at  the  DRAM

organization, we shall be trying to develop an idea of row hammers. Then we shall be

trying to study the address mappings like the various address mapping from the virtual

address  to  the  physical  address,  and also  like  from the  virtual  address  to  the  cache

memory like how essentially we kind of access the cache sets and the corresponding

slices in the cache. And finally, we shall take a look at the attack and also discuss a

potential countermeasure which is essentially popular against row hammer attacks.



(Refer Slide Time: 01:12)

So,  to  start  with  here  is  a  look  at  the  DRAM organization.  So,  we  these  are  very

simplified view of how the DRAM looks like. So, you can see that the common form of

the  DRAM chip  essentially  has  got  several  components  and the  components  can  be

studied in this following or it is organized in this following fashion. So, on one hand you

have got the DIMM. So, the DIMM essentially is shown by this green bar.

So,  this  stands  for  the  Dual  Inline  Memory Module  and this  typically  comprises  of

several ranks of memory. So, for example, here it has been shown that there are two

ranks and each of these ranks intern corresponds of you know like several cells of the

DRAM memories, which essentially called as banks. And therefore, the row comprises

of several banks for example here there are eight banks shown and if you look into each

of these banks,  then it  is  basically  a  regular organization of cells  DRAM of DRAM

memories. And the each of these essentially are or can be realized potentially by a one

transistor  implementation  where  there  is  one  transistor  and  there  is  one  accompany

capacitor which basically stores the content of that specific cell.

So, the DRAM essentially is a regular organization, which is essentially comprises of

these components; that means, the cells, the banks, the rows and the DIMM and finally,

the channel which basically connects it with the memory controller.



(Refer Slide Time: 02:44)

So, the idea is that what we will be studying in this particular attack is essentially or

basically originates from understanding the physics inside of what happens in your bank

in your DRAM memory. So, for example, each of these or if you go into the bank of the

memory, then we will see that the DRAM cells or organized as rows and columns its

regular organization of rows and columns and there is one access transistor. So, this is

the transistor with basically kind of stores or essentially is enables to write and also read

data from the cell, and you can see that there is a capacitor which basically stores the

content of the specific cell. 

Now, this access transistor is connected to a word line. So, this is your word line ok. So,

which when on connects the capacitor to the bit line ok. So, this bit line so basically you

can  read  or  write  the  corresponding  data  through  a  row  buffers,  there  is  also  an

accompanying row buffer. So, the idea is that when this specific word line and bit line

gets connected,  then this  particular  transistor or the corresponding capacitor  basically

gets connected to the row buffer. So, the content of the entire row essentially is deposited

into the row buffer  and therefore,  we can read the content  from the row buffer. So,

reading or writing is done through a row buffer which can hold charge for the entire row.

Therefore the entire row if I for example, want to access the row 2; then the content of

row 2 is stored in the row buffer. So, the row buffers serves as something like a cache of

your content; that means, you know like next time in you are accessing the row 2 then



you do not need to go and access row 2, but you can get that content quiet fast from the

row buffer. So, that essentially improves the overall performance of the DRAM cell or

the DRAM memory.

On the other hand if you are reading from another row for example, from row 1, then you

essentially have to kind of evict that data from the row buffer and you have to basically

put the data from row 1 to row buffer and then read the content from row buffer. So,

there is something like a conflict which can happen in the row buffer. So, typically there

are three steps when you are accessing this. So, here there is an opening row; that means,

you basically enable the row, you read or write to the cells and then you close the row.

So, these are like the three broad steps that would take place. So, as we know that in a

one transistor model or in this kind of DRAM cells the charge in the cells will decay

which time and therefore, this needs periodical refresh.

Otherwise  right  the  content  of  the  data  gets  essentially  tampered  and  that  would

potentially lead errors or falls inside your DRAM cells. So, typically the refresh period

that we use is you know 64 milliseconds; that means, every 64 milliseconds there is a

refresh cycle which happens to kind of you like refresh the states of the corresponding

cells.

(Refer Slide Time: 05:29)

So, what is row hammer? So, row hammer is essentially a bulk or you know like an

exploit which has been found in the modern day DRAM chips, and it essentially states



from the fact that row hammer is the term which is coined for the disturbances in the

recent  DRAM chips,  which  repeated  row activation  causes.  So,  those are  if  you are

repeatedly activating the rows then a specific kind of errors occurred which are called as

row hammers or row hammer errors. So, this activation or repeated row activation causes

the DRAM cells to electrically interact with each other, and this repeated discharging and

recharging of the cells of a row results in leakage of charge in the adjacent rows.

So, if repeated enough times typically before the automatic refresh because there is a

seeing with the refresh happens only in 64 milliseconds.  So, if we are accessing this

faster than that, then this repeated accesses can cause potential  flipping of bits in the

adjacent rows and this essentially is termed as the row hammer or essentially the row

hammer bug. So, this instrument of doing the repeated access is essentially called a row

hammer and we will see like how that can be used as a potential instrument to create

faults in targeted secrets, which are located somewhere in our DRAM cells.

(Refer Slide Time: 06:49)

So, what is the underlying principle or let us see how is we can perform hammering by

seeing a very high level code for doing the doing this operation.

So, here is an regular arrangement of the cells arranged in rows and columns, and this is

the corresponding row buffer. So, what we are trying to do here is, basically we are

trying to make a regular access to this components and we essentially the objective is



that we would like to create a fault inside one of the rows. So, what we basically try to do

is encamp or shown here by this code snippet.

So, we can see here, we so we are trying to use these for example, these two to move

instructions, essentially are trying to read from address X and read from access Y. So, the

idea is that when you are reading from access X and when you are reading from Y. So,

you are basically wanting to read from the content of X and Y.

So, note that one thing that we will always keep in mind throughout our discussion on

the attack is that, the address when we are accessing a specific memory location then that

content could be there in your potential cache memory. So, therefore, if you really want

to kind of understand or observe the phenomenon what happens in your actual DRAM

cell, we have to ensure that data is not available in the cache. So, we have to kind of

evict the data from the cache.

So,  we  can  use  dedicated  instruction  and  shown  here  which  is  like  clflush;  which

essentially  evicts  the data  from all  levels  of the cache.  For  example,  when we do a

clflush X then the data is not present in the cache, similarly if I do the cl flush Y, then

also that data is not available in the cache. So, these two things basically ensures that

next time when I am accessing the data from the address locations X and Y, then I am

indeed accessing the DRAM cells and not the cache memory.

So, when I am accessing for example, these two rows like X and Y. So, these are two

different addresses and imagine that they get mapped into two different rows in a specific

bank of the DRAM. Then the data right would be so the initially when I am accessing for

example, this row then say the i minus 1th row then the content basically comes from the

row buffer and therefore, the next time if I access the same row same row, then I get the

data from row buffer.

So, in order to create the flip we basically as we know that we have to basically ensure

that  every time I have to access the corresponding row in the bank and not the row

buffer. So, therefore, I need to ensure that I basically make the next access same maybe

at address Y which is at a different row in the corresponding bank. So, therefore, right if

this two accesses for example, the access to X and the access to Y happens very fast kind

of faster than its refreshed cycle, then the adjacent row as shown here as the i th row

shows or may show sudden bit flips.



For example the one can potentially get 0 and that essentially would mean that there is a

suddenly a fault which happens in your adjacent row. So, we have seen that faults right

essentially  can  be  quite  catastrophic  to  cryptographic  implementations  and  also  in

general security. And therefore, right flipping bits in memory without really accessing

them is really a serious threat that we need to consider.

(Refer Slide Time: 10:12)

So, therefore, right I mean of course, like modern day DRAM cells comes with several

levels of protection, but we can see that in certain scenarios we are able to create such

kind of bit flips and therefore, it seems like this instrument of row hammer is a quiet

powerful tool, and we can potentially apply it with the objective to create bit flips in

cryptographic keys which are stored in memory. Of course like it would not be easy, but

it seems like we can potentially try to do that and that is something that we would like to

study subsequently.
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So, we have an instrument like the row hammer and we would like to apply it and we

would like to study for so far what are the challenges and objectives of you know like

this instrument that we have found.

So, the first thing we observe is that the secret is residing in some location in the cache

memory, and also in some unknown location in the main memory kind of something that

I do not know because I do not have a handle exactly where it is where the where it is

located and where it gets mapped into the actual DR memory or even the cache memory.

So, the attacker having user level privileges in the system does not have the knowledge

of this locations even in the last level cache. So, we will consider in the last level cache

because typically the access is shared by several cores and apparently this makes the

attack much more conducive. So, we will be considering the LLC cache and the DRAM,

since these locations are decided by mapping so the physical address bits.

So,  as  an  attacker  I  do  not  have  knowledge  about  or  direct  knowledge  about  the

corresponding physical  address  bits  from which I  can understand you know like the

corresponding locations in the DRAM or even in the LLC. So, in order to perform the

row  hammer  on  the  secret  exponent  the  adversary  first  needs  to  identify  the

corresponding  bank  in  DRAM in  which  the  secret  exponent  resides  that  is  the  first

objective  that  we  have.  And  along  with  it  if  the  adversary  frequently  queries  the

decryption oracle; that means, you know like for example, we will be assuming the threat



model where the adversity is kind of interacting with your target, basically is allowing

the target or the victim to perform decryption with the secret key.

So, the idea is that, if the adversary frequently queries the decryption oracle with valid

cipher  text  decryption  process  will  perform exponensation  with  which  will  basically

make an access to the secret exponent and that is what we want as an attacker. We want

that the attacker again and again performs decryption with the same key and we would

basically in that process or during that time try to understand where that secret is located

in the DRAM cell and also even in the LLC cache.

So, but access requests as I said right are usually addressed from the cache memory

because again and again if you allow the you know like the process to the victim to

execute on the same content then that data would be available in the cache memory. And

therefore, we will not be able to observe this phenomenon and exploit it. So, therefore,

what we do is basically make an access; we basically adversary incorporates a spy which

runs concurrently to the target process.

And then uses the timing side channels something as we have already seen previously in

context to do when we discussed about cache attacks, what is called as prime and probe

attacks  and we basically  kind of employ a prime and probe attack to understand the

mapping into a channel, rank, bank where the secret has been correspondingly mapped

to. We also would like to kind of use this spy to ensure that the data is always evicted

from the cache; that means, we basically I want to know the corresponding mapping of

the secret exponent into the last level cache. So, that even the spy right is making an

access I mean the victim basically is always making an access to the actual DRAM cell

and not to the cache memory.
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So, this is you know like a very simple organization of cache memory a very standard

organization of the cache memory. So, for example, consider in our system we will be

considering a four core architecture. So, we know that we have got private L1 caches we

have got L2 caches and then there is a unified L3 cache that is essentially serving as the

last level cache.  So, the idea is that in recent processes there is a hierarchy of cache

memories, the size of each cache level increases as we move higher.

So, you can see that the size progressively increases and the last level cache is shared

across processor cores and it  takes larger time and its  further  divided into slices for

concurrent  access  by cores.  So,  targeting the last  level  cache  is  therefore,  conducive

because it is shared by across by several cores and the effect is more observable.
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So, what we can observe here is that it is the first thing is that therefore, we have to

understand the address mappings like from the virtual address to the physical address.

So, let  us take a quick look back to our architecture textbooks.  So, here is a virtual

address mapping. So, which is essentially divided into two parts one is the page offset

and the other part is the page number. And then the memory management unit basically

kind of kind of has got an mechanism of giving us the frame number and the page offset,

which is basically combined to get the corresponding physical address. However, when

you are accessing the cache memory for a four core machine,  we will  be essentially

having four slices in the cache.

The idea is that the mapping from the physical address to the corresponding location in

the.  So,  basically  like  this  is  an  n  way  said  as  reduce  cache.  So,  in  our  particular

architecture  we  will  be  considering  a  12  way  set  associative  cache,  that  is  the

experimental setup that we will be considering, but in general it is a m way set cache and

these are all the four potential slices.

So, each slice essentially has got several sets and every set. So, imagine that suppose

there are c sets for example, and each of these sets essentially has got n ways ok. So,

therefore, potentially right we can have n ways for every slice and there are c potential

sets. So, these are my corresponding c sets and there are n ways in which the mapping

can occur.



So, therefore, right I mean you can observe that there is a hash function and we will kind

of elaborate  about  that subsequently this  essentially  has been unfired in some of the

research  papers  and  essentially  potentially  gives  us  a  reverse  engineering  on  this

mapping because this may not be exactly documented in the available white papers. So,

there are some prior research with basically tells us how this mapping takes place.

And as we can see that the set index here basically tells us what is the corresponding set

index, but there are m ways. So, there are any of the m ways are potentially possible and

where this particular address maps for example, the corresponding slice where it maps to

is indicated by this hash function which takes a 30 bit input and generates a 2 bit output

which is used to index any of the 4 potential slices. So, this is the corresponding mapping

that we would like to understand and the cipher as much as necessary so.

(Refer Slide Time: 17:51)

So, therefore, right with this background let us take a look at the corresponding attack

strategy. So, the first job right is basically to ensure that when the target of the victim

basically executes on your unknown secret exponent, then every time it is accessing the

secret exponent it is basically making an access to the DRAM and not to the cache. So,

we have to evict it and because of that right we have to understand the eviction set, we

have to understand the corresponding eviction set; that means, the footprint of the secret

exponent or the cache memory.



In order to understand that, we will basically apply a technique which is called as prime

and probe and that is something that we have already studied previously. So, the idea is

that  the  adversary  is  oblivious  of  the  virtual  address  space  which  is  used  by  the

decryption engine and thus involves a spy process to do that. So, the adversary basically

kind of uses a spy and the spy essentially you know like so, basically this spy process

uses a  basically  uses or employs this  prime and probe cache excess methodology to

identify the target sets. So, the idea is basically the spy primes are corresponding area in

the cache memory and subsequently comes back after the execution of the victim and

probes its own access.

If the individual access time takes a significantly large amount of time, then it basically

kind of you know like assumes or guesses that those areas has been evicted by the victim

process and that is why it is taking more time and with that right basically understands

this mapping and understands eventually the eviction set which is essentially required to

ensure  that  or  this  understanding  is  important  to  ensure  that,  every  time  the  secret

exponent is kind of access subsequently when we actually launch the attack that access

should be done from the DRAM and not from the s ram or the cache memory. 

So, the idea is that the spy process targets the last level cache as we have discussed.

Since it is shared with all codes of the system the spy initially allocates a set of data we

elements and consults its own page map to obtain the corresponding physical addresses

for  each  element.  So,  in  this  attack  right  we  are  basically  assuming  that  the  spy

essentially has got the user level access to the two page map, and with that essentially it

can know the its own physical addresses ok. How it must be kept in mind that because of

this potential attacks subsequent to Linux kernel version 4 this access to page map has

been made restricted. However, there maybe you know like several systems where still

these are enabled and more importantly right in embedded processes right we may still

have  access  to  this  kind  of  page  maps  at  user  levels  and which  could  potentially  a

security threat.

Moreover right there could be other ways of circumventing this, but at least right for this

within this scope of this cores we will be restricting and assuming an access two page

map; that means, the spy right can understand the corresponding physical addresses of its

own access patterns. So, for example, if we makes a memory map, then it knows the

corresponding physical address of the accesses which it is making itself.



So, there is essentially you know like a quick look about a you know like a document

from www dot  kernel  dot  org which basically  tells  that  since  Linux 4.0.  If  you are

accessing this without the user without the root privilege, then you would not get the

page map access. And the reason is the information about this is restricted because this

has been exploited in row hammer vulnerabilities and therefore, this is a serious threat to

be considered.

(Refer Slide Time: 21:38)

So, here is the basic broad strategy behind the attack. So, the cache set collision with the

secret.  So,  we  basically  want  to  kind  of  understand  the  eviction  set  and  we  can

understand this in a step by step process which is illustrated in this diagram.

So,  the  adversary  basically  initiates  the  spy  process  and  the  spy  process  basically

generates a memory map. So, it does a memory map and it computes the sets slice sets

slice addressing from its physical address. So, as I said that it knows its corresponding

physical address by using the re page map. And for the target set t for example, you

basically fixes the target set t. So, the target set t as we have already seen it can be found

out from its physical address and right I mean for every target set c then so I set t there

are n possible ways because it is a n way set cache. So, it selects n elements in distinct

cache lines which maps to a set t for all the k possible slices because there are k slices

that is what we are assuming. And it primes the LLC by accessing this selected elements.



So, basically primes means it kind of fills up the cache memory with these potential

locations and then it basically sends a selected input to the decryption engine and allows

the target or the victim to decrypt. So, note that if the when the corresponding cipher text

is  returned  back  to  the  adversary  because  the  adversary  is  also  interacting  with  the

decryption engine, and that is quite a practical threat model. Because any adversary can

access or you know like can interact with a secret or with essentially a decryption engine.

And when it receives the decryption or decrypted message from the from the decryption

engine it basically asks the spy to get or to start probing because it has already done the

priming operation now it will basically start probing.

So, the probing means the spy will access the selective elements again and for every

access we will measure its time. The idea is that if this time is more than the threshold

then it will basically kind of conjecture or assume is that, the decryption engine probably

has come and evicted those things and that is why I am taking more time and through

that  it  basically  understands  the  footprint  and  from  there  the  eviction  set  for  the

decryption exponent.

(Refer Slide Time: 24:04)

So, note that one thing should be kept in mind that this mapping from the virtual address

to the corresponding physical address can change every time. So, therefore, right what

we are studying right now is a methodology, but that does not mean when we again start

or restart this process the mapping will be the same. So, therefore, we have to do as we



will see later on when we do the attack we have to do the attack all at once, we have to

do the attack in situ ok. But this basically tells us how the mapping can be deciphered

and this basically we will use as a subsequently as an oracle in my broader attack which

we will discuss subsequent to this.

So,  this  basically  kind  of  tells  us  about  the  reverse  engineering  of  the  cache  slice

selection. If the target system is having k processor cores then the LLC has got k slices as

we have already seen, each as slice has a has got c cache sets and each set being m way

associative or there is an m way associatively. So; that means, that if the cache line size

is of b bytes like if the cache size is of b bytes for example, 64 bytes, then we will be

using the least significant log 64 base 2 or log b base 2 bits of the physical address as a

index within the cache line. And again we will be for getting the set number we will be

using log c base 2 to indicate or determine the cache set number.

And because of associatively n such cache lines having identical log c base 2 bits reside

in the same set. Now we already discussed about the hash function which basically is

already you know like established in this  two prior papers which tells  about  how to

perform  the  reverse  engineering  to  know  or  is  or  obtained  the  corresponding  slice

number from the physical address.

(Refer Slide Time: 25:58)



So, with this reverse engineering in bind what we do is to precisely control the eviction

of existing cache lines from the set t, the spy runs the selection algorithm to select an

eviction set of m into k elements belonging to each set t then the selection algorithm.

So, basically selects elements of distinct cache lines for each of the k cache slices; such

that the physical addresses maps to the same set t. In addition each set of a slice is m way

associative and therefore, the selection algorithm selects m elements corresponding to

each k cache slice belonging to the set t. The spy accesses each of these m into k selected

memory elements repeatedly to ensure that the cache replacement policy has evicted the

existing cache lines.

So, the idea is that right now if you basically observed then you are in a scenario where

you have  basically  been.  So,  if  you have  basically  target  a  specific  set  there  are  m

possible ways over here right. So, this essentially is a specific slice of the cache suppose

the slash i slice i for example, there are m possible ways and there are k such slices. So,

suppose there are k slices. So, therefore, if we if you kind of understand a or fix the

corresponding set,  then totally  there are m k possible addresses or m into k possible

addresses, there are m ways part slice and there are k slices.

So, totally there are m k possible addresses. So, these are the you know like for every

target  say  t  therefore,  the  spy  basically  runs  a  selection  algorithm  and  therefore,  it

basically probes these m k selected memory elements and tries to understand which set

corresponds to the secret exponent.

So, the idea is that it basically will probe for all the corresponding c sets that are there.

So, remember that there are potential is c sets that we are considering and for every set

there will be m k possible locations. So, it will basically probe these locations and try to

understand which set among the c sets are corresponding to the secret exponent ok. So,

this essentially implies that, with this setting what we essentially can do right now is we

can basically launch the prime and probe analysis.
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 So, the spy basically primes the target set t. So, that is your specific target set t out of the

c possible sets and becomes ideal.

So, prime means it  basically  fills  up that  fills  up the cache with those m k possible

addresses. The adversary sends the chosen ciphertext for decryption and waits till  the

decryption engine sends back the corresponding message after decrypting. So, note that

the objective of the attacker is not to get the message, but to get the secret exponent

because that is more important. If cache sets used by the decryption is same as the spy,

then the cache lines primed by the spy process gets evicted during the decryption and the

adversary signals the spy now to start probing.

So, it basically starts to probe at those mk locations and the spy process accesses each of

the selected n elements of the eviction set t for all the k slices and the time to access each

of these elements are observed. When the spy again accesses the same elements if it

takes longer time to access then we can conclude that the cache set has been access by

the decryption and therefore, it takes more time.
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So, one can you know like try to make this attack more interesting and can try to go into

the slice also, because remember that we also have an understanding about how the slice

has been selected and we will see subsequent to this right that how we can make the

attack even more concentrated or more focused by getting into the slice, where we can

reduce the possible sets or eviction set from m into k to only m values because now we

basically are considering only specific slice.

So, for illustrating this attack we will basically considering in our subsequent class on a

1024 bit  RSA implementation,  which  is  essentially  using square and multiply  as  the

underlying  exponential  algorithm  using  GNU-MP big  integer  library  and  this  is  the

corresponding version, and the experiments will illustrated on Intel Core i5 processor

which has got an Intel Ivy Bridge micro architecture which is running an Ubuntu 12.04

LTS with the Kernel version of 3.2. Note that here we can essentially get unrestricted

page map ok. And the Linux as I already mentioned the Linux kernel version for our

experimental  set  up  being  older  than  version  4.0  we  do  not  require  administrator

privileges to perform the entire attack, but the exact description of the attack we will see

in the next class.

Thanks for your attention.


