
Hardware Security
Prof. Debdeep Mukhopadhyay

Department of Computer Science and Engineering
Indian Institute of Technology, Kharagpur

Lecture – 58
Microarchitectural Attacks: Part 2 Branch Prediction Attacks (Contd.)

So, welcome back to this class on Hardware Security. So, we shall be continuing our

discussion on Branch Prediction Attacks.

(Refer Slide Time: 00:21)

In particular we shall be trying to see how the branch predictions or discussions on

branch predictions can be used or leverage to actually perform an attack on public key

cryptosystems.

(Refer Slide Time: 00:31)

In particular in the last class, we saw that there was a nice correlation that we observe

between the system for a branch prediction and our simple approximate model which is

the 2 bit counter model. So, the question is whether we can utilize it to attack an actual

implementation of cryptographic algorithm.

So, we shall be considering an array seem implementation and elliptic curve

cryptographic implementation and we shall be trying to illustrate how an attack works.

(Refer Slide Time: 00:58)

So, let us consider the classic algorithm for modular exponentiation as our target. So, in

this particular algorithm right we are the input m is encrypted or decrypted by

performing modular exponentiation with modulus N on public or private keys

represented as an n bit string. And this algorithm is essentially is nothing, but and

implementation based on the simple square multiply exponentiation algorithm.

The idea is that here we basically perform a you know like. So, that the idea is that we

basically perform a squaring; and a squaring is essentially kind of observed as S into S

modulo N. So, this is something that we always do whereas, if the secret bit is one; that

means, if your secret bit d i is 1. So, this is your i th secret bit then we actually do a

addition and multiplication; that means, we basically take S and we multiply S with M.

So, that is your S into M modulo N operation. So, the final objective is to calculate say

M power of d where d has been elaborated in the form of a binary exponent.

So, condition execution of instructions and their dependence on secret exponent is

exploited as we have already seen by simple power and timing side channels. So, here

we will see that how we can perform a branch mis prediction attack on these kind of

implementations. So, we will start with this and we will gradually go into slightly more

improvements.

(Refer Slide Time: 02:25)

So, the improvement that we will be considering is essentially a very popular

exponentiation and primitive, for asymmetric key cryptographic algorithms which is

essentially called as the Montgomery ladder algorithm.

So, the Montgomery ladder algorithm is essentially as you can observe that as supposed

to the previous implementation, where there was only one register that is the register S.

So, now, there are two registers. So, we have got the register R 0 and R 1 we initialize R

0 to 1 and R 1 to M. So, the idea here is that we basically make R 0 as 1 and R 1 as M

and the ratio that is of R 1 and R 0 which is here M essentially remains an invariant

through this entire loop.

So, these basically does not change. So, this invariance can be observed here for

example, if the d i is 0 like if the secret i’th bit is 0, then you basically a multiply R 1 in

R one; that means, you basically perform. So, the idea is that if d i is 0 you basically

calculate R 1 as R 1 multiplied by R 0 of course, like everything is modulo N. So, I am

not writing the modulo N part. And if and also write what you do is you basically do a

squaring in R 0. So, R 0 becomes R 0 square. So, here you can observe that if you

calculate R 1 by R 0. So, that remains is R 1 into R 0 divided by R 0 square so, that

remains as R 1 by R 0, but in the previous iteration.

So, let me write this as a i minus 1 and this is your i ith iteration output likewise right if

your secret bit is 1 that is d i is 1, then you perform multiplication in R 0. So, therefore,

R 0 becomes R 0 into R 1 and you perform squaring in R 1. So, R 1 becomes R 1 square

again you observe that R 1 by R 0 in the ith iteration is same as that of R 1 by R 0 in the

previous iteration ok. So, therefore, right at the end of the day we basically ensure that

through in through this computation, you have you return the value of R 0 and the value

of R 0 is indeed equal to you know like M to the power d modulo N which is essentially

what we want.

But at every iteration you are performing both squaring and multiplication. So, therefore,

this is a more secured algorithm or at this it is more secured against simple power attacks

or simple side channels. And it is also timing attack resistance in the sense like it is a it

does not have a timing time variance as we have seen in the previous case, because you

are performing a multiplication and squaring in both the cases ok. So, it is essentially

having a balanced is a more of a balanced is a more balanced exponential technique

compared to the knife square multiply algorithm.

 (Refer Slide Time: 05:13)

So, now we shall be seeing right essentially of very popular way of calculating these

multiplications and as you can see that multiplications are inherent to performing the

public key algorithms. So, people have developed several architectures for

multiplication. One of the very popular multiplication routines is essentially due to what

is called as the Montgomery multiplication. So, here we illustrate it is an efficient way of

performing multiplication modulo N. So, therefore, there are 2 arguments a and b and I

want to calculate a into b mod N where N is essentially a k bit number.

So, the idea is that N is essentially a k bit number and k as we know is typically large.

So, it could be for example, 1024 bit or 2048 bit or even larger. So, it is based on. So,

now, this multiplication is based on what is called as Montgomery reduction. So,

Montgomery reduction basically chooses a large value of R, but then R essentially is

something like 2 power of k and as you can see that N is a k bit number. So, you can

expect that R is larger than N ok.

So, R is kind of larger than N ok. So, R is essentially also observe the form of R which is

essentially 2 power of k and that makes computation for you know using R quite easy

because it is a power of 2. So, in Montgomery reduction we basically calculate or return

the value of TR inverse ok. So, T is my input and I would like to calculate TR inverse

when T is restricted between say NR between 0 to NR how do we do that is shown here

by this algorithm. So, we basically calculate m which is equal to T into minus N to the

power of minus 1 modulo R. So, therefore, we basically calculate N to the power of

minus 1 and then we perform this computation and then we basically subtract this value

is greater than equal to N, then we subtract N and this is my result.

And this result is indeed equal to or the claim is that the result which is returned here is

equal to TR to the power of minus 1 modulo N. So, let us try to understand why it works

and the logic is quite simple. So, if we basically cross multiply. So, if we multiply T and

R, then you should get the result right is essentially T into R which is equal to. So, you

can observe here that T is nothing, but T plus mN by R. So, if I multiply small t into R

then that is equal to T plus mN. So, if I now take modulo N then this basically goes to 0

therefore, I have only T and that basically establishes this fact.

Also note because it is important to observe note that, that why is this an integer because

that I have say that I have done thus this division right n T plus m N divided by R. So,

we observed that T plus mN is equal to T plus T into minus N to the power of minus 1 N

because m is essentially equal to T into minus N to the power of minus 1 modulo R.

So, therefore, right if I do a modulo R operation then this part essentially is 1.And

therefore, or minus 1 and therefore, I get T minus T which is equal to 0 which means R

divides T plus m N and therefore, right T plus m N divided by R is an integer ok. And

also observed that I have done here one subtraction with N why 1 subtraction with N

suffices. So, the idea is that you observe the m is essentially between 0 to R this you can

easily observe because you are doing a modulo R operation. So, m is between 0 to R and

therefore, if I multiply with n then I get 0 is less than equal to mN is less than RN. So,

this number is less than RN and also observed T is less than RN and therefore, right

when I add T plus m N then this value is less than 2 RN; that means, right T plus mN

divided by R is less than 2N.

So, therefore, this number does not exceed N and therefore, right it does not exceed 2N.

So, therefore, in order to do or bring the result modulo N because finally, you have to

bring the result modulo N. We have to do at most one subtraction with N and therefore,

right is a very common way of doing the Montgomery reduction and many libraries

actually does this extra reduction operation and this is exactly what we will be targeting

in our attack. So, this if statement is, what we will be targeting in our attack description.

So, just to complete this part, how we can you know like use this to perform

multiplication can be just observed by in this slide.

(Refer Slide Time: 09:23)

So, the idea is that what we do is as shown here that suppose I want to multiply A and B

by using the Montgomery algorithm. So, what we do here is shown over here. So, the

idea is that I have got a simple description here. So, what we do is we pick an R which is

say equal to 2 to the power of k and the idea is that 2 to the power of k and which is R

and N the gcd is 1 so; that means, like as we have already seen N to the power of minus

1 modulo R exists and we have computed that.

So, what we do is we compute a dash which is equal to a into R and we compute b dash

which is equal to b into R and this is called as Montgomery Reduction; that means, with

Montgomery transformation; that means, we transform a to the Montgomery domain and

call it say a dash or maybe A and we transfer b into the Montgomery domain and that is

called as B. So, idea is a is nothing, but a into R modulo n and B is again b into R

modulo n ok. So, so you can observed that as we have in the previous case we have seen

that suppose I you know like I have got a simple routine of calculating. So, if I give you

an input for example, as we have seen in the previous case, where the input is for

example, what we get is T into R to the power of minus 1.

So, therefore, what I can do over here is if I call that routine and I pass a and R square.

(Refer Slide Time: 10:51)

So, if I pass like a and R square as 1 input, then I would get the result as a into R square.

So, basically right this is my result. So, basically I would get a into R square to the power

of R to the power of minus 1 and that is equal to a into R. So, then we basically also we

perform the Montgomery multiplication with b and R square and I get the result which is

b into R square with R to the power of minus 1 and that is b into R ok.

So, then we perform a Montgomery multiplication and the Montgomery multiplication is

essentially shown over here as you know like perform with A and B. So, the idea is that a

is your a into R. So, we basically perform or multiply a into R with b into R and with R

to the power of minus 1. So, that becomes your a b R and then we basically again call

this routine a b R with 1. So, you can see that this is Montgomery multiplication is with

1. So, we basically multiply abR with 1 and with R inverse and that is equal to a into b

ok.

So, we basically need a way of calculating you know like of calculating essentially a into

b into R to the power of minus 1 and with that routine we essentially can calculate a into

b as shown over in this part. You also observe that you know like once we have the

inputs in Montgomery domain. So, if you perform the Montgomery reduction, the

Montgomery reduction which a and if you just take this a dash and if you take this b dash

then; if you are given this a dash into b dash, then the Montgomery reduction gives you

the value of a dash into b dash R to the power of minus 1 because the moment you are as

we have seen in the previous case that if you are given T right basically get T into R to

the power of minus 1 modulo n ok. So, likewise right you can perform a sequence of

Montgomery reductions and you can obtain the corresponding results here and that pretty

much gives you the corresponding Montgomery multiplication just by doing

Montgomery reductions.

And therefore, right why it is very efficient because the moment you have got R as in the

form of 2 to the power of k, the assumption is that multiplication with R division with R

and modulo with R a trivial operations they are much more easier and doing modulo N

operations so. So, therefore, right I mean this is essentially the working of the

Montgomery operation. So, now, the question is right if you have got a kind of library,

where essentially which essentially uses Montgomery multiplication there is a high

probability or at least you should be careful if there is a routine as shown here where the

Montgomery multiplication is using a Montgomery reduction where there is this kind of

conditional statement ok.

And that is exactly what we will be targeting in our attack description. So, the overview

of the attack is as follows; the work shows that the HPCs which are used as performance

monitors or watchman in modern computer systems can be utilized to retrieve the secret

keys by reasonably modelled adversaries. The attack exploits the characteristics of

branch predictor and shows that the leakage of the key increases with the ability of the

attacker to model the predictor more accurately.

For example, we have made an approximation that, there is a nice correlation with a 2 bit

predictor. If I have a better model, then I can use that better model but we will show in

most cases right the simple model has a 2 bit predictor. So, which will be sufficient we

claim that the branch miss from the HPCs are in need more significant and they are more

significant side channels compared to timing. More details of this work can be observed

in this work there is shown here in this paper.

(Refer Slide Time: 14:37)

So, how we should rather why should we consider HPCs for security analysis? So, the

results from HPCs that treated as an accurate representation of events occurring in

hardware, performance of subsystem has already been allowed in the Linux kernel 2.6 31

onwards as performance counters for Linux.

So, we at this point assume that the adversary can observe the total number of branch

misses in an entire decryption operation, by using as command like perf stat minus e

branch misses now observe that this is the event that you would like to observe and you

basically give any executable at this point ok. And so, now, there is system in the system

we are considering that both the user who is my target. So, this is my victim who is

essentially running a decryption code with heavy branches and also right not only every

branches.

But branches as we have seen you know that which depends on the secret, and there is a

spy or an attacker we which basically run say multiplication code and observe the perf

stat concurrently. So, therefore, this executable could be the executable of the

multiplication code for example. So, then the idea is that if this person like is executing a

decryption code and there are branch misses as you can observe in this statistic in this in

this graph, then this essentially is also observable to the attacker or to the spy.

 (Refer Slide Time: 15:54)

So, therefore right I mean the idea here is that an un privileged user residing on the same

system, who has basically the capability of monitoring these events can gain access to

sensitive information of the privilege that is what we will illustrate here and show that

how we can get the key, which essentially the processor or the user is or the victim is

utilizing. So, that the main point is that the increase or decrease of branch misses of the

privileged process can be monitored by the spy, and the present attack exploits the ability

to measure the increase or decrease a branch misses rather than actual value.

So, note that when we if you observe the plot that we showed in context 2 correlation, we

could not you know we are not claiming or it is not that one thing we should be kept in

mind is that we are not predicting you know like the actual branch misses. But what we

are predicting is the relative branch misses like whether the branch misses are increasing

decreasing or whether the remaining constant.

So, what is more important is the monotonicity of the graph rather than you know like

whether the actual value of the branch misses. So, what we do over here is that in order

to explain the attack? We basically monitor the branch misses on the square and multiply

and the Montgomery ladder algorithm using Montgomery multiplication as a subroutine

of for operations like squaring and multiplication and the branch miss relies on the

ability of the branch predictor to correctly predict the future branch misses which should

be taken.

And the profiling of the HPCs using performance monitoring tools provides a very

simple user interface to different hardware events and what we are observing here is the

branch misses.

(Refer Slide Time: 17:25)

So, in the attack we will basically considering say an n bit secret scalar. So, it could be in

the either elliptic curve crypto or in the even the R S exponential as we have seen.

Suppose the secret is shown here as k 0 k 1 and so, on till k n minus 1. So, it is an n bit

secret that we target.

So, the trace of the taken or the not taken branches as conditioned on the scalar bits are

expressed as say b 0 b 1 so, on till b n minus 1. So, these are basically nothing, but

sequence of taken not taken and so, on. So, the idea is that if the key bit is 1; that means,

if the say the k j is 1, then the conditional additional statement in the double and add

algorithm gets executed ok. So, therefore, if I get a 1, then I basically execute it and

therefore, right it implies that when k j is 1 the branch is 0 because I mean the branch the

branch outcome is 0, because you are because it is essentially resulting is a not taken

branch because you are not taking that branch ok. So, the what I am trying to say is that

if you for example, right; like if say the k i is or k j is 1, then you are saying suppose that

you essentially execute for example, square and multiply say you execute a

multiplication step or what you in elliptic curve cryptographic right you have basically

execute. So, this is an odd you execute say double I mean the an addition operation ok.

So, you have perform an addition.

So, execute multiplication or you execute an addition. So, the idea is that if the k j k j is 1

since you are going to the next instruction, that implies that there is the branch is not

taken and therefore, right we would say that the b j is equal to 0. On the other hand if k j

is equal to 0, then you basically jump to the next location and therefore, actually the

branch takes place and so, you write b j is equal to 1 ok.

(Refer Slide Time: 19:23)

So, now, with this background you can observe right I mean and its also important

observe that if you take this kind of codes and run it to several compiler optimizations

like O1, O2 and O3 then you will still find that these kind of instructions will remain in

your final target code.

And therefore, right the idea is that the assembly generated even using various

optimization levels would probably retain these conditional statements that you are

writing in your high level program.

(Refer Slide Time: 19:51)

And that means right that understanding and evaluating them with respect to security is

of paramount importance. So, what we try to do in the attack can be shown here is as in

the threat models. So, again this is a an iterative attack algorithm. So, we assume that we

know say you know like d 0 to d i, and what we would like to know is or we know the

first i bits of the private key and we want to determine the next unknown bit which is d i

of the key.

So, we generate a trace of branches. So, what we do is that, we basically target the

underlying Montgomery multiplication of may be the, you know like of may be the of

the squaring step because remember the squaring takes place always so. So, therefore,

right we basically target the Montgomery reduction if statement as I said which was the

target, and we basically kind of target it and basically stimulate the trace; that means, you

know like in several the whenever you like that the d 0 is if a d 0 means the first key bit

is coming into play, then the next key bit which is d 1 which is coming to play and so, on

at every step like d 0 d 1 d 2 d 3 and so, on.

The corresponding if statement in the Montgomery multiplication or the Montgomery

reduction is essentially generating a sequence of branches; like taken not taken and so on

ok. So, this essentially or this history is essentially denoted as the trace of branches and

is essentially is what we basically denote by this tuple t M 1 t M 2 and so on till t m i ok.

So, therefore, right for if so, this is the this is for the conditional reduction of the

Montgomery multiplication at every squaring operation.

So, then we basically make an guess of the i,th bit. So, remember that the i,th bit can

have the value either 0 or 1 and based upon that we basically make a prediction. We

basically kind of simulate an appropriate value of t m i plus 1 j; that means, the next

corresponding you know like branch taken or branch not taken for the conditional

reduction of the Montgomery multiplication of again of the squaring step. So, the

adversary remember can only simulate the branches using its model for any partially

known bit. So, this is partial simulation can only be performed by using a simple model

essentially which is the 2 bit predictor model that I described.

And the adversary does not have any granular control on the HPC values of any sub

simulation. So, we basically for the actual system like for the actual target we basically

can get a you know like a hard count for the branch misses; that means, when the exactly

when the entire description happened I get a total count of the decryption I get the total

count of the number of branch misses. But I do not have a very fine grained control; that

means, I do not have a control like what happens in every bit of the input for example.

So, therefore, right, but we can use our model to do that partial simulation ok.

So, now the question is right how we how can we employ this to perform and complete

an n to n attack.

(Refer Slide Time: 22:49)

So, therefore, right what we do can be illustrated here in this diagram. So, this is the

offline phase. So, we take or we collect several inputs. So, these are my plain text and we

basically divide my n plain text by using an offline phase or in the offline phase. So,

what I do is here shown here is that I basically guess this i’th bit. So, this i’th bit can be

either 0 or can be either 1 and I know so, this is already known. So, this is my prior

knowledge. So, I already know say the previous key bits.

I may a guess here. So, this guess can be 0 or this guess can be 1 and note that I also

know the trace of these taken not taken, because since I know this d 0 d 1 till d i minus 1,

I can calculate right this m to the power of d 0 till say d i minus 1 and I observe the

corresponding squaring operation of the Montgomery reduction ok. I mean I observe the

corresponding I mean I observe the squaring of the you know like I basically observe the

squaring of the you know like the square and multiply algorithm for example, and in

particular what we observe is the Montgomery reduction ok.

So, because the squaring right will also use or call the Montgomery reduction underneath

and we basically observe the Montgomery reduction and note that in the Montgomery

reduction we had this line right which is something like t i greater than N or t i greater

than equal to N I basically do a t equal to t minus N operation. So, this is the 1 this is the

operation which I target. And in particular I target the outcome of this branch whether the

branch is taken or whether the branch is not taken.

But in order to understand that I need to simulate this value of t and this essentially I can

get what is the function of my previous i minus 1 bits, and also on the value of the

message based upon that I can simulate this possible you know like sequences. So, now,

right I mean what I do is, I basically take my simple to be predictor and I feed my inputs

t 1 to t i for example, and that gives me you know like a guess of the next out come. So,

if the next outcome and also right based upon the value of d i equal to 0 or d i equal to 1,

I can extend this stimulation to know what is the actual value of the next outcome of this

of this branch.

If the idea is that if my 2 bit predictor correctly gives me the next sequence; that means,

if there is a match when I am giving t 1 to t i and if indeed matches with your t i plus 1.

So, t i plus 1 means you know like essentially is this outcome for example, then I put m

to the basket M 1. So, again I made 10, 2 baskets here call it as M 1 and call it as M 2 the

idea is that if I get the this is these 2 are indeed equal then I put this message m into the

bucket M 1 or I put the put m into the bucket mM 2 ok.

On the other hand if this is equal to T I plus 1 0. So, that is essentially the other

possibility; that means, if d i equal to 0, then write the outcome here; that means, whether

these outcome was 0 I mean whether the this branch was taken or not or not taken is

captured by say t i plus 1 0 ok. So, if my model; that means, if the model T essentially

correctly essentially matches with t i plus 1 0 ok, then I basically take again or define 2

more buckets call it as M 3 and call it as M 4 and I put the message.

So, if it matches then I put it into m or if it does not match then I put this m into the

bucket M 4 ok. So, therefore, right I basically kind of partition my input m into these

buckets M 1 M 2 M 3 and M 4 and I basically. So, you see that there are 2 alternatives

this m can go into either M 1 or it can go into M 2 or this message m can also go into M

3 and M 4. So, there can be potentially a message m which goes into say M 1 or it also

goes to say may be M 3 that is also possible.

So, we basically kind of in order to kind of improve the accuracy of the attack, what we

do is basically we basically do a further step and we basically ensure that there is no

common cipher texts in the sets M 1 M 3 and M 2 M 4 ok.

(Refer Slide Time: 27:11)

So, note that it may happen that a sequence matches here and therefore, right it goes into

M 1 ok. So, now, it may also happen that the sequence. So, the idea is that if it goes to M

3, then it is kind of contradiction right because essentially in one case right I am

predicting that it matches with t i plus 1 and in the other case right it is as I am saying

that it matches with t i plus 1 0.

So, in order to remove the contradiction I ensure that there is no common ciphertext

which goes into M 1 M 3 and M 2 M 4 and the sets are ideally disjoint and note that what

I do is. So, therefore, right I have got now four buckets like M 1 M 2 M 3 and M 4 the

idea is there M 1 carries those messages which does not cause a mis or mis prediction

during the Montgomery multiplication of the i plus 1 th squaring if d i is equal to 1 and

M 2 are those messages which causes a mis prediction during this particular operation

ok.

As you can observe that if it goes into M 1 then; that means, that there is no mis

prediction and therefore, right it does not cause any mis prediction on if d i is equal to 1

ok. On the other hand if it is not equal to this, then it will causes the mis prediction and

since right your comparing with t i plus 1; that means, you are basically doing it for the

case or the assumption that d i is equal to 1 ok. Likewise right M 3 essentially contains

those messages which does not cause a miss during the Montgomery multiplication of

the i plus 1th squaring if d i is equal to 0 and it is an M 4 consists of those messages

which consists of the mis prediction during the Montgomery multiplication of the i plus

1th squaring if d i is equal to 0.

 (Refer Slide Time: 29:03)

So, therefore now, the attack is very straight forward. So, basically kind of have a online

phase where the probable next bit is decided by the following observations. So, basically

kind of measure the average branch misses. So, this is observed by the actual hardware

performance counter events and the idea is that if the average of the bucket of M 2 that

means, of all the messages which has gone into the M 2 bucket is more than you know

like the average of those branch misses which has gone into the M 1 bucket, then you

find that what you are basically saying is that the average of M 2 is more than the

average of M 1 ok.

So, you see that M 2 actually causes a mis prediction, and M 1 it cause it does not cause

a mis prediction so; that means, right this is kind of incoherence with what we expect and

therefore, right it is most likely more likely that d i is indeed equal to 1 ok. On the

contrary if you also if I would like to confirm your test you can also compared with M 3

and M 4 and you see the here the average of M 4 is less than the average of M 3 ok. So,

again if you come to M 3 and M 4 you see that here the average is of M 4 essentially this

is a mis prediction and this is the no mis prediction.

So, if you get the you know like the average of M 3 more than the average of M 4, then

for example, what you observe here then; that means, that it is not incoherence with what

should happen if d i was 0 and therefore, it confirms that d i is not 0 ok.

So, therefore, this test confirm that d i is equal to 1 and this test confirms the d i is not 0

and therefore, it kind of improves my confidence in the fact that the next bit is probably

1 and likewise for the you know that the opposite will happen when the next bit when I

would predict the next bit to be 0.

 (Refer Slide Time: 30:43)

So, with this basically attack in attack in attack setup right we basically have got this

online phase or the offline phase where basically take all the messages and I use my

simulated model to basically partition, the inputs into the buckets M 1 M 2 M 3 and M 4

and there is an online phase where I basically do this comparison ok.

 (Refer Slide Time: 30:59)

Remember that when you are doing online phase you just have a bunch of hardware

performance counters for the corresponding messages. So, you basically kind of decrypt

using M 1 decrypt using M 2 decrypt using M 3 and so on and you basically get a bunch

of hardware performance counter events ok.

So, then you basically calculate this averages and then you make a decision about the

next bit ok. So, you basically kind of do this attack in an iterative fashion. Here is an

experimental validation for the attack.

(Refer Slide Time: 31:25)

So, you see that we show here in particular an online phase of the attack where the target

is a square and multiply algorithm, which has been performed with thousand iterations.

So, in particular this has been done on a on an Intel Core 2 duo a platform and you can

observe here that the first one shows that the correct assumption is d i is equal to 1. So, it

kind of shows that the average time for example, for the shown in the blue lines is more

than that for the red ones and the blue ones correspond or the blue dots correspond to the

fact where for M 2 and the we what we see is that the average for M 2 is more than the

average for M 1.

And if you go to the algorithm right you see that the average for M 2 being more than

average for M 1, the algorithm predicts that it is equal to 1 ok. The next bit is 1 which is

indeed the correct assumption likewise if you partition with M 3 and M 4, we observe

that the average for M 4 is less than the average for M 3. So, the average for M 3 is more

and here also you observe that if the average for M 3 is more then you basically predict

the next bit to be 1 and therefore, indeed right the incorrect assumption would be d i

equal to 0 and this also confirms that the next bit is 1 ok. So, therefore, this kind of

accurately estimates from specific i’th bit.

So, likewise we can perform this attack for other corresponding bits and retrieve the

attack 1 by 1.

(Refer Slide Time: 32:44)

So, we can also perform the attack. So, here result on how the attack works on the

Montgomery ladder. Again you know like the similar kind of experimentation that we do

and you can observe that here the separation also can be observed and also kind of

correctly estimates the fact that d i is equal to 1.

(Refer Slide Time: 33:00)

So, this attack right can also help one thing we should be kept in mind that this is an

iterative attack. So, if you do a mistake in one of the bits then the attack in accuracy

would perculate. One way of understanding that we have made a mistake is that once

you make a mistake and if you would like to kind of discover the next subsequent bits,

then you will find that the in conclusiveness of the confidence is pretty low. For example,

like in the previous cases if you are made the correctly guess the guess the previous bits

correctly, then you would probably have something like a 90 versus ten ratio. Whereas,

here probably you have something like 60 versus 40 or something like which is

essentially kind of in conclusive.

So, this probably will kind of there is an alert, that there is a mistake that you have done

in the previous iteration. So, you can there is an inherent amount of you know like error

correction involved in this direction mechanism.

(Refer Slide Time: 33:48)

So, here is an example of how the, you know like the attack works on a set to 56 curve.

Again this is an elliptic curve crypto system and in particular right I am not going into

the details, but what you can do here is that is attack is based on say double and add

algorithms.

So, what you can do is that you can target the double operation like in the previous case I

was targeting the squaring operation. So, here I will be targeting the double operation;

and in the double operation right there again subsequent several operations and you can

china choose any one of them in particular right since there are more multiplications and

all of them are doing the Montgomery reduction operation. So, you basically expect that

the separation would be probably even more clear and that is again observed here by this

observation.

 (Refer Slide Time: 34:31)

Here is an illustration of the attack performing or targeting an actual elliptic curve

implementation of the NIST curves. So, so this is the NIST 256 or NIST P 2 256 in

particular the curve is called as sec P 256 R 1. So, here you can again observe that an a

similar attack has been demonstrated here, which essentially uses the technique that we

have just now discussed a just to mention you know like in the previous cases we were

targeting the squaring operations. So, here we are basically targeting the doubling

operation.

So, in the doubling operation now like in the squaring operation there was only one

multiplication, but in the doubling operation there are several multiplications that you

can target in particular in this attack we target the T 1 Z to Z 1 square as the you know

like underlying operation ok. So, there are eight multiplications and you know you can

target any one of them. So, we target get 1 of them in the eight multiplications in the

double operation ok. So, the also right and since there are many multiplications

apparently what we observe is that the separation or the performance of the attack is even

better on elliptic curve based implementations.

(Refer Slide Time: 35:41)

So, likewise you can also perform the attack on Montgomery ladder which we essentially

know is a more balanced structure. So, here is an example to show that again how the

separate how again we can perform the attack on a similar platform for example, this

attack has been demonstrated on an Intel Core I 3 machine. And the offline phase for the

Montgomery attack algorithm is slightly different from that of the double and add. Here

2 sub simulated traces are present depending on the scalar bits like in the previous case

there was only one sub simulation which were doing.

But in the Montgomery ladder there will be 2 sub simulations which you would which

you have to basically take care because of the fact that because you know that in one of

them you are you are you are probably doing a doubling of you know you are doing it

over there are two registers and you are basically operating on both of them. So, here two

sub simulated traces are present depending on the scalar bit the next bit and hence the

partitioning of the inputs is done by selecting one of these traces depending on the guess

of the secret bit.

(Refer Slide Time: 36:36)

So, to conclude branch mis predictions can be utilized. So, the powerful side channel

vector. HPCs offer a rich source of information which can be utilized for attacking public

key ciphers. The message is not to implement public key ciphers with secret dependent

conditional statements, which we see are vulnerable to side channels and micro

architectural attacks.

HPCs have been recently restricted for privileged uses and therefore right probably it is

not easy to mount or it is not so, easy to mount able to mount attacks directly using HPC

values. Nevertheless they provide important information for analysis and even raising

alerts for possible side channel attacks. For example, right once you develop this attack

you can probably try to do the redo this attack by just replacing the branch miss event

with timing as a side channel vector ok.

(Refer Slide Time: 37:28)

So, with this we would like to conclude and the reference that we have used for this book

is essentially shown here is timing channels in cryptography published by springer.

So, thank you for your attention.

