
Hardware Security
Prof. Debdeep Mukhopadhyay

Department of Computer Science and Engineering
Indian Institute of Technology, Kharagpur

Lecture – 56
Microarchitectural Attacks: Part 2 Cache Timing Attacks on Block Ciphers

(Contd.)

So, welcome back to this class on Hardware Security. So, we shall be continuing our

discussion on cache timing attacks. In particular we shall be trying to talk about cache

timing attacks on small table ciphers and we shall see them on impacts of Paralyzation

and Out-of-Order Loading.

(Refer Slide Time: 00:31)

In order to perform this because last day we saw that cache timing attacks on a cipher

implementations which small tables seems to be more difficult than doing on block

ciphers implemented with larger tables.

And then we shall try to talk about a case study with an example of cipher which is

called as Clefia.

(Refer Slide Time: 00:50)

So, therefore, right let us take a just recapitulate that the fact that, we saw that when there

is a cipher which is implemented with a small table, then the variation of the number of

misses is gone because we essentially have got a fixed number of misses ok. So, what is

the impact of this on the Osvik’s Attack? So, again let us take again recapitulate the

Osviks attack, but now where a cipher has been implemented with a small table like AES

has well implemented say with 256 values ok.

So, therefore, right what will happen here is that. So, I am just storing the basically the S-

Box as the table rather than the entire round as the table. So, the S-Box become smaller,

now the table becomes smaller. So, here what happens is that now we basically again

given access to the spy. So, therefore, the spy again fills up the cache memory with

garbage data now the access comes back to AES. So, the AES now starts doing

encryption. So, remember now I have a got a small table so, therefore, after few

execution the entire thing is removed from the cache memory.

So, now right if the spy comes back then what will happen is that, it will not basically get

the nice distribution. So, in remember in the previous case we got like few hits and few

misses. So, if basically aids because it gives you a nice distribution of cache hits and

cache misses. But now right everything is becomes a miss and that essentially becomes

an issue.

(Refer Slide Time: 02:17)

So, now, right I mean; so, the even in context of the effect of timing using small tables.

So, if you see that when you have got large tables, then the deviation from the average is

also very large. So, you see that there is a large variation because the number of misses

across various executions are deferring ok. Like when I am doing say the first

encryption, I get large; I get a certain number of misses.

But in the next encryption I can get a completely different number of misses and that

means, the timing would vary. On the other end here now the number of misses becomes

a constant with small tables and therefore, right you see that there are lesser deviations in

time that we expect. For example, right here is an example where the cipher has been

implemented with small tables and you can see that the deviation from average is really

really small ok. So, the question is can you still exploit them, can you still kind of you

know like do an attack with them or this deviation is really like a random deviation

which cannot be exploited.

(Refer Slide Time: 03:10)

So we will see that you know like using a certain kind of feature in architecture, you can

rationalize and even that small timing right is not random and essentially has got a

relationship with the secret key. So, therefore, right; so, let us take a look back into you

know like some of the architectural techniques, for example, as I as we already discussed

that the processors fundamental aim is to reduce the miss penalty and enhance

performance. So, because of that there are several techniques which has been proposed

and adopted in architectures; for example, speculative loading, prefetching, out-of-order

loading, parallelization’s, overlapping ok.

(Refer Slide Time: 03:48)

So, therefore, just to take a look one by one at them. In speculative loading you load a

data into processor before proceeding branches are resolved ok. So, therefore, right what

is the effect of this on a block cipher kind of execution? Probably none because you

know like in branches they are not generally used in block ciphers ok. So, there are no

branches as such so; that means, like in particular I am talking about speculations with

respect to say branch branches ok. So, therefore, right it does not seem that there would

be a direct leakage because of this kind of architectural features.

(Refer Slide Time: 04:25)

On the other hand right what is out of order loading? So, it means that data accessed in

an order it is like if the program is in a specific order, the execution may be in a different

order ok so, depending upon the fact whether there any two dependencies across

instructions.

(Refer Slide Time: 04:40)

So now, let us take an example of the impact of out of over load order loading where a

block cipher has been implemented and essentially we are considering a software code

for a block cipher. So, we know that in round one for example. So, if I take the example

of AES without loss of generality, there are several S Box table axis that you are doing

and all of them are independent ok.

So, next time when you are doing a round encryption again you are doing a bunch of S-

Box axis, but remember that in a round the S-Boxes are independent there are no

dependencies, but across round there are dependences ok. That means, if you want to do

out-of-order loading inside a round you can do out–of-order loading, but across round

you cannot do out-of-order loading because there is aberrance ok. So, therefore, right

out-of-order loading works only within a round and apparently not between the rounds.

So, that is one of the observations.

(Refer Slide Time: 05:31)

So now, let us try to look at another feature which is due to the you know like the support

of you know like which modern day computer architectures provide to handle two or

more cache misses in parallel ok. So, what our modern day architecture support right is

that if there are two or more cache misses and there are no dependence between them,

then you can essentially pipeline their memory reads ok; that means, you can essentially

perform one of them without waiting for the other one to complete ok. And these are

very interesting feature and very important feature which enhances the overall you know

like overall performance of the cache memory.

So, therefore, right let us consider a scenario or impact of this on cipher execution by

taking a very simple example of a 5 round block cipher; hypothetical 5 round block

cipher where there are 4 cache misses ok. So, even in that in the first execution you have

got the 4 cache misses like 2, 1, 1. So, that mean the distribution is like in the first round

there are 2 cache misses, in a second round there is 1 miss, in the third round there is 1

miss ok. So, let us consider another execution and remember that we are considering

ciphers with small tables and therefore, the number of cache misses remains constant

again 4, but the distribution is different. So, we get like one 1, 1, 1 and then 0 and 1 ok.

So, the question is right what would be the timing required for E1 and E2. So, we saw

that in the previous case if I just do not consider all these kind of tricks like you know

like the out-of-order execution or the out-of-order loading, overlapping, parallelization if

I just kind of not consider them, then I would expect that the execution time for E1 and

E2 would be roughly the same because the number of cache misses is the same, but there

is a difference. For example, here we see that the 2 cache misses that are happening over

here essentially can be handled in parallel because there are no dependencies across them

ok.

On the other hand here the 4 cache misses right since they are happening one after the

other they cannot be handled in parallel. So, therefore, right although the cache misses

here and the cache misses here are same because of these features, I would expect the

time of E1 would be less than the time of E2 ok. There will be a small timing difference,

but the timing difference essentially has got aberrance on the distribution of cache

misses; that means, although the total number of cache misses are still constant, the

distribution of cache misses are varying and that essentially can potentially leak

information ok.

(Refer Slide Time: 08:04)

So, therefore, right if I want to extend cache timing attacks to work on ciphers with small

tables; that means, right although the deviation in encryption time is too less right, but it

is still not random ok. And essentially can be potentially exploited, but of course, right

we also must keep in mind that the timing measurements needs to be much more

accurate.

(Refer Slide Time: 08:27)

So, one of the improvements that we would like to do here for is that, rather than using a

standard way of measuring time we would use this time stamp counter which is shown as

‘RDTSC’ instruction to measure timing ok.

So, this is; but this is also you know like prone to errors. So, the processor pipeline an

out of order execution. So, one of the things that we can do is that we will be using a

specific instruction called a ‘CPUID’ before calling RDTSC, this would flush the

processor pipeline and therefore, all RDTSC instructions will be measured and done on a

fresh pipeline ok. So, it is kind of reduces the amount of non determinacy ok. And

actually there is another further instruction which you can also use nowadays which is

like which is called as RDTSCP ok. And you can probably you know like improve the

quality of your timing measurements even more ok.

(Refer Slide Time: 09:20)

So, now let us take a look or you know like see a case study of a block cipher called

Clefia which was designed originally by Sony for protecting their digital copyrights. It is

a 128 bit cipher and a block cipher which has been implemented with small S-Boxes so.

So, therefore, right in this cipher this is an example or depiction of the cipher, this cipher

essentially has got several rounds of encryption you know like around 18 rounds of

encryption and this also like operates on 128 bits of block cipher at least in one of the

variants.

And then if you observe right there are two non-linear. So, this is example of a Feistel

cipher, more accurately it is a generalized Feistel cipher where there are two non-linear

lookups; one of them is F0 and the other one is F1 ok. So, here is how the F0 looks like?

There are two S-Boxes internally like S1 and S0 which are shown over here and

followed by a linear transformation shown as M1 ok.

Similarly F0 is also the same S-Boxes S0 and S1, but slightly the order has been changed

followed by another linear transformation which is denoted as M 0 ok. So, then what we

do is there is another difference in the cipher compared to AES for example, this is an

example of a cipher where there is an input and output whitening key; that means, you

know like you have got another key which we essentially used to actually generate the

round keys, but you basically exhort them at the beginning and also at the end ok.

 (Refer Slide Time: 10:58)

So therefore right we will probably take a quick look at least a part of the Clefia key

expansion. So, you have got this whitening key is shown as WK0, WK1, WK2 and

WK3. So, what happens is that you basically develop an internal variable denoted as L

and sigma L and there is a function called as GFN which I am not going in details.

Where you basically create this L0, L1, L2 and L3 by applying this GFN function on the

secret key and then you basically again apply this sigma L. So, this is basically a result of

the permutation which you do and then you obtain the individual round keys by you

know like applying certain operations of XORing this l with a value which is CON ok.

And then you obtain the first to third round keys and these round keys are denoted as

RK0, RK1, RK2 and RK3 ok. So, our objective right would be obtain the, you know like

the correspond if you are able to again you know like obtain the entire round key, then

you essentially are again to again able to obtain the original primary key and that kind of

breaks the security of Clefia. So, there are you know like bunch of other round keys for

example, like you have got RK0, RK1, RK2 and RK3 you have got RK4, RK5, RK6 and

RK7. So, our objective will be to recover the entire round key and that breaks the

security of this cipher.

(Refer Slide Time: 12:23)

 So, therefore, right in order to adopt the timing attack on Clefia because remember it is a

Feistel cipher we do another modification. So, here right here remember that I had only

one branch which goes to this S-Box, but in Clefia which is a Feistel cipher it may

happen that to an S-Box. There are different branches from different secret keys which

goes into that S-Box and that makes the attack little bit more complicated because you

have to vary only those bytes which go to the same S-Box as and your target S box

whereas, the other parts you have to keep constant.

(Refer Slide Time: 12:57)

And also right just to remember that we are considering the effect of out of order loading

on Clefia. So, that effect should still be there because again there are non-linear lookups

like F0 and F1 where there are internal access to the S0 and S1 and remember that again

inside one round that is suppose in round 1, the accesses to S0 S1 and S0 S1 here in F1

they are all independent and therefore, they can be serviced in parallel whereas, if you go

across rounds they cannot be serviced in parallel because there is this dependency. So,

therefore, out of order loading works only within a round and not between the rounds.

(Refer Slide Time: 13:34)

So, on modern caches the execution time only depends on the not only depends on the

number of misses, but also on the distribution of misses. So, this is the fact that we

would like to exploit. In fact, our findings show that the encryption time is directly

proportional to one by number of misses in the first round ok. So, I leave it to you as an

exercise to think that why this is true ok. Remember that we are talking about small table

implementations where the total number of misses is a constant. So, therefore, right what

is important is that the distribution of misses depends on the key so, execution time

depends on the key.

(Refer Slide Time: 14:10)

So, now let us see a step by step process of recovering the round keys ok. The first part is

very easy. So, this is the structure which is required for cache attack. So, again this part is

quite similar to what we have seen in the context of AES and that is even true in the case

of Clefia here.

(Refer Slide Time: 14:26).

So, what we do is we basically target F0 we target F1 and we recover RK0 and RK1. So,

this part is exactly similar we basically again do a timing profile analysis and again do a

correlation to obtain the value of RK0 and RK1 in this fashion.

(Refer Slide Time: 14:43)

Now, we want to know whether we can recover the other parts of the key. So, now, you

see that this becomes more complicated because it is not possible to determine RK2 and

RK3 directly because there is an unknown a whitening key WK0 and WK1 which I do

not know ok. So, what I can obtain is basically the XOR of WK0 and RK2. Remember

right if you go back to the structure this gets XORed here and therefore, right I can

obtain the XOR of RK2 and WK0 and I can obtain the XOR of RK3 and WK1 ok.

So, therefore, right I mean RK3 and WK1. So, therefore, I can obtain these XORs and

that is possible. So, therefore, RK2 XOR with WK0 and RK2 so, this we can obtain and

you know like we can obtain the value of this using previous determine RK0 and RK1.

So, RK0 and RK1 has already been previously deciphered and therefore, we can use that

knowledge because you know like since I know the value of RK0 and RK1, I can now

keep this part you know like I can now vary this part, but since I know RK0 and RK1 I

pretty much know what is the input which is coming here and I know what is the input

which is coming here ok.

So, I have got control till this points because I have already deciphered the value of RK0

and RK1. So, then I again repeat a process similar to the previous attack and I obtain the

XOR between this key and this key and this key and this whitening key.

(Refer Slide Time: 16:12)

So, now we want to know whether we can obtain further. So, therefore, RK4 and RK5 is

the next thing that we target and it is interesting to see that RK4 you can recover because

this is the branch which is affects RK4 and there is no whitening key in this branch ok.

So, now you have already recovered RK0 you have recovered the XOR of RK2 and

WK0. So, you can again have a control at this point because of this and therefore, right

you can again by a similar analysis obtain the value of RK4 and RK5. RK4 and RK5 can

be determined using RK0 and RK1 and the XOR of RK2 and WK0 and the XOR of RK3

and WK1 ok. So, this is again typo this should this should be RK3 XOR with WK0.

(Refer Slide Time: 17:04)

So, let me just correct it. So, this is the XOR of RK3 and WK; so, this is the XOR of

RK3 and WK1 ok. So, therefore, right what we do now is we go ahead and we basically

right see that whether we can recover the remaining parts of the key in a similar fashion

and so now, we determine RK1 to determine RK2 and RK3, but for that we have to again

resort to the key scheduling algorithm. So, remember that the L right is essentially

obtained from the round keys and this is the function for doing that. We already know the

value of RK0 and RK1 CON is a constant. So, we know the value of L ok.

And now, therefore, we can again obtain the value of sigma L because this function is a

public function and remember that again by seeing the equations apparently that is you

know, you can you know the value of sigma L, you know the value of RK4 and RK5 and

again there is a constant which if we apparently if we XOR and if you see the key

scheduling equation of Clefia, then you will be able to obtain the entire value of WK0

and 25 bits of WK1 ok.

Again if you observe the key scheduling algorithm right from these known values like

the entire WK0 and 25 bits of WK1 you can obtain the whole of RK2 and 25 bits of RK3

ok. So, therefore, right we have obtained RK0 and RK1, RK2 and 25 bits of RK3 the

remaining bits of RK3 right we can essentially just do a brute force because that is

essentially pretty small.

(Refer Slide Time: 18:42)

So, therefore, right now if you again repeat this attack this is the result of this attack on

popular Intel platforms like Intel Core 2 Duo, Intel Pentium 4, Intel atom and here is the

summary of the attack you can see that the study phase requires around 2 power of 24

iterations for each step. Remember that you have to do; when you are doing the study

right you have to basically repeat the process several times. So, you get a accurate

measurement of the average timing and then you do your correlation. So, again in the

attack phase when you are correlating you are doing around slightly lesser, but still quite

large like 2 power of 22 iterations for each step.

And the total complexity of this attack is 2 power of 26.64 assuming that the first steps

are always correct ok; that means, I am assuming that the steps that we are doing one by

one are correct. So, overall like if you launch this attack apparently the study time; that

means, the template 300 time takes around 1000 seconds more accurately 1300 seconds.

But the time for the actual attack is pretty small; it takes around 312 seconds to do the

attack. And there is a small error percentage which is around 3 percent interestingly right

what happens is that if there is a particular error in retrieving a key byte, then when you

repeat the experiment you will see often that that bit, that byte creates an error.

So, you kind of by you know like combining the two results you know that which byte

you are not is kind of changing. So, you know that this particular byte in the key are not

able to retrieve whereas, the other bytes are you are more confident about them. So,

therefore, you can do a brute force search in that key byte ok. So, this is the sort of you

can find this reference from this paper published in Indocrypt, but it shows that overall

how you can do basically it is a summary of the attack that we just now discussed.

 (Refer Slide Time: 20:18)

So, here is a quick snapshot into one of the results, you can see that what we plot here

this is the correct key and we plot the correlation of the correct key with also the wrong

keys and you can find that the correlation of the wrong keys are almost half compared to

the correlation of the correct keys or the correct key bytes and which shows that the

exactly you know the entire 16 bit; 16 bytes of the key has been recovered in case of

Clefia ok. So, that leads to a complete attack on Clefia using cached timing attacks.

(Refer Slide Time: 20:51)

So, to summarize microarchitecture attacks encompasses the intersection of architecture

and computer security, architectures have been developed to enhance performance and

therefore, we have got cache memories, prefetchers, out of order execution, branch

predictions ok, but we will see more in details in some of the future classes, but they can

all be targeted by adversaries ok.

So, timing channels in cryptography and the effect of cache memories are profound and

we have seen some of the attacks. In particular we have seen different kinds of cache

attacks like cache trace attacks, cache access attacks and cache timing attacks. In

particular cache timing attacks can be of great threat to cipher implementations because

they can be remotely performed and we have seen that, such attacks can also be aided by

modern day features in computer architecture like out of order loading and

parallelization and overlapping in handling cache misses ok.

(Refer Slide Time: 21:54)

So, in the next class right we shall continue on our discussions on micro architecture

attacks, and I would also like to point out that one of the important references that I use

in this particular part is this book called as Timing Channels in Cryptography published

by Springer and you will find that there are several attack descriptions which are given in

this textbook.

And so, thank you for your attention.

