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Welcome to this class on Hardware Security.

(Refer Slide Time: 00:38)

So, today we shall be starting a new topic. We shall be starting to discuss on, what is

called  as  microarchitectural  attacks,  which  basically,  is  kind  of  the  confluence  of

architecture  or  computer  architecture  and  its  effect  on  security  of  ciphers  or  cipher

implementations.

So, we shall be starting this discussion with quick discussion about what is meant by

micro-architectural  leakages.  We  shall  be  trying  to  talk  about  timing  channels  in

cryptography, which is a very important aspect to understand to realize an end to end

secured implementation.  We shall  be discussing in particular about cache attacks and

timing channels created using cache memories. And then, we shall be talking about the

types of cache attacks and then finally, cache timing attacks on AES.

We intend to also discuss about cache timing attacks on small table ciphers and their

impact on of an impact of techniques like parallelization and out of order loading. And



finally, we shall wrap up with a case study on cipher called Clefia. Like a basically a

cache timing attack on Clefia which is a very which is again a standard block cipher.

(Refer Slide Time: 01:22)

So, first let us have a quick look on the, you know the effect of micro architectures on

security. So, computer architecture has been fundamentally designed with performance

as a primary design criteria. And security has always been an afterthought. For example,

we  have  various  techniques  like  speculative  execution,  execution  which  is  an

optimization technique where a computer system performs some tasks that may not be

needed. So, this essentially has been the basis of several attacks leading to a very famous

attack which has recently been discovered, which is called as which is called as Spectre

and Meltdown.

So, so, this is the reference of this attack and this basically kind of shook the world and

took the world or most of the, most part of the world by surprise. And to wrap up or to

quote Bruce Schneier, who is  a very famous security expert  and security  commenter

commentator. Fixing them either requires a patch that results in a major performance hit,

or is impossible and requires a re-architecture of conditional execution in future CPU

chips.

So, this is essentially extremely difficult because at this point after so many years of

evolution  of  computer  architecture  and  techniques  of  how  to  handle  such  kind  of

executions or speculative execution. It is kind of you know, like that we have to go back



to 20 years. So, this essentially makes the entire scenario quite dangerous. So, all this

happens primarily because you know like the most, even now when we kind of find out

or develop a new technique, our primary goal has been performance.

So, security right, essentially cannot be an afterthought and these kind of attacks again

and again tell us that we need to have proper design for security criteria.

(Refer Slide Time: 03:08)

So, so, there are you know like. So, how do you kind of model micro architecture? So,

this becomes extremely complicated because of you know, the fact that when we run our

processes  on  computers.  Then  there  are  so  many  complicated  things  which  happen.

There  are  so  many  complicated  interactions  that  modeling  of  such  kind  of  attacks

become extremely challenging and difficult.

For example, when we are talk previously about side channel attacks where our primary

focus was like power, electromagnetic radiations. We found that you know like, we can

actually  although not  exactly  accurate,  but  we can  essentially  fairly  model  them by

methodologies. Like having distance or having weights of the internal sales. On the other

hand  leakage  right,  in  when we talk  about  computers,  or  you know like  computing

systems  can  be  actually  a  function  of  several  parameters.  For  example,  it  could  be

because of the branch prediction algorithms. It could be because of hyper threading. It

could be your memory technology. It could be your memory hierarchy. It could be the

cache memory or the cache memory architecture and so many. There are so many other



things which can be of direct consequence or direct impact on the, on micro architectural

leakages.

So, our focus in today’s talk is primarily on cache attacks and in particular about the

timing channel which is created due to, due to the existence of cache memories.

(Refer Slide Time: 04:27)

So, therefore, right, if we take a little bit of look and the, and try to understand why

cache memory is create a timing channel in pictography. So, let us try to illustrate this by

this diagram. So, you can see there are again the two, two members like Alice and Bob,

who  are  essentially  participating  in  a  communication.  Where  you  know  like,  Bob

essentially is using a cipher and because of that right, he uses a secret key.

The secret key essentially is embedded in its own computing system and therefore, right

the idea is that the adversary should not definitely have access to the secret key. Because,

then the enter security collapses. Now, we can pretty much assume that the computing

system on which Bob is working, is a general purpose machine which probably from the

one humans model essentially look like this. 

So, it is essentially you have got a main memory, you have got a micro processor, but we

know that there is a memory wall. And therefore, you can pretty much expect, that in

order  to  bridge  this  memory  wall  there  is  an  intermediate  cache  memory  which



essentially  tries to you know like appear as a staircase between the memory and the

microprocessor.

So therefore, right? Now imagine that the adversary right, who is basically observing this

channel or the communication channel which is untrusted. Has definitely access to the

input and the output,  but along with it  right,  imagine that the adversary also has the

capability of very accurately monitoring time and measure time or monitor time. So now,

the objective of the adversary is again like any attacker or most attackers, is to obtain

Bob’s secret key. And now, basically the attacker wants to use this time as a channel or a

covert channel for understanding what is the internal secret. And therefore, the question

is, why is time a channel for information leakage.

So,  if  you  just  take  a  look  back  or  just  remember  about  our  classical  textbooks  in

computer architecture we have all seen this, that if there is a cache hit and if there is a

cache miss, then there is a difference in timing. For example, if the data is available in

the cache memory, then you would expect that the access time of a particular memory

access  would  be  less.  Whereas  right,  if  there  is  a  cache  miss  then  there  are  more

management  in  which  happens,  which  results  in  a  larger  access  time.  Because,  you

access  the  primary  memory  or  the  main  memory  which  is  seemingly  much  slower

compared to your cache memory.

So, imagine that the attacker is able to distinguish between a cache hit and a cache miss

because  of  the  ability  to  measure  time  very  accurately.  And  then,  this  ability  to

understand whether an access is essentially resulted in a cache hit or it resulted in a cache

miss can apparently reduce the entropy of the secret key.



 (Refer Slide Time: 06:59)

So, so in order to again understand that, let us try to take a look about at a specific type

of example, which falls into the class of what are called as time-driven cache attacks.

So, again like, observe that suppose, you have a cipher like AES for example, in which

there are different parts of the key. For example, K 0 and K 1 here at symbolic or K 0 and

K 4 here are symbolic of two parts of the key. Both of them, both of them are getting

kind of you know like XOR with you plain text. For example, K 0 is getting XOR with P

0, which is a part of the plain text again and again P 4 is getting XOR with the part which

is K 4. And the both of them are creating a virtual address which is say P 0 XOR with K

0 and here in this case it is P 4 XOR with K 4.

So, now imagine that the cipher has been implemented with lot of tables and I will come

to this point subsequently little bit more details. But, imagine at this point that the cipher

has been implemented using tables. And therefore, right, you make an axis at this table at

the location or  address which is P 0 XOR with K 0. And here you make an axis at P 4

XOR with K 4. So therefore, right, the adversary is making two independent accesses.

Now, if you kind of remember about for example, the AES structure in which there were

16 parts like when I talk about AES-128. There are 16 parts of the key ok. The idea is

that  each  part  of  the  key  is  independent.  And  therefore,  right,  the  entropy  is  a

proportional to 16 multiplied by 8 that is 128 bits. That means, right, that K 0 or K 4 and

K 0 and K 4 they to be they should be two independent components of the key. That



means, that if I give you the knowledge of K 0, you basically have no information about

K 4 and vice versa.

But, now we will see how using timing channel and you know like just understanding

that whether there is a cache hit or a cache miss can significantly reduce the entropy of

the key or the key material.

For example, if the, so again you know like the adversary like in most attacks has got a

control of the input, we assume that. So, it can basically send pretty much P 0 and P 4

and  can  also  observe  the  timing  by  using  a  very  accurate  timing  channel.  So  now,

suppose, the adversary is able to understand that there is a cache hit by understanding

that the suddenly you know like you finds a there is an access time. So, what happens is

that there are there are 2 accesses which happens here.

So, the first access for example, happens in this happens in this table right. So, therefore,

this is your access 1. So, this is your access 1 and this is the 2nd access which happens

here in this table. So, these 2 accesses are seemingly independent. But, imagine right,

that the attacker is able to find that access which happens to the 2nd table takes very

takes very small amount of time. And therefore, he suspects that it resulted in a cache hit.

So, now like we most of these discussions right, that we do we will  assume that the

ciphered starts with an initial cache warming, which means that, initially there is no data

available in the cache. So, I would expect that so, 1st access definitely resulted in a cache

miss and, but the 2nd one can be a cache hit or a cache miss. And suppose, the attacker

by its ability to measure time accurately, kind of comprehends that there was a cache hit.

So, that immediately tells us that the address at which the, you know, like the access had

happened. Essentially right, if I just assume a very simplistic model of the cache and if I

initially assume that there is only 1 element in the cache line. Then, I can directly write

that the XOR of P 0 and K 0 is same as that of the XOR of P 4 and K K 4. That means,

these two XORs are exactly the same. Even if I assume that, you know, like there are

multiple values in the cache line.

Then, as I know that what happens in the virtual address. The position in the cache line is

essentially kind of you know, like understood by the lower significant bits of the virtual

address. So, that means, right, if there is something which goes into a cache line, then I



would kind of. So, let me make an assumption that I am not able to distinguish between

what goes into between the bytes which or between the elements which goes into a cache

line.

That means, right, I will be able to recover a certain part of certain part of the address.

That means, I can only tell that in that case right, that maybe you know like the, the few

the few bits of the of the address essentially resulted in the same value.

That means, what can probably happen in that case right, that when I find a there is a

cache hit I can probably tell that the XOR of P 0 and K 0. And if I take the lsb for

example, or few lsbs of depending upon how many you know, like. For example, right, if

there are like 64 bytes, that it may happen that 6 bits are used to kind of index that. Then,

that means, right, the last 6 bits, that means, the six lsbs of P 0 XOR with K 0 is same as

that of P 4 XOR with K 4.

So,  that  means,  that  so,  let  me  just  write  6  lsb.  For  example,  to  indicate  the  least

significant bits ok. So, that means, right, it implies that I am not able to recover the entire

address, but at the same time like definitely few few bits of the address. So, that basically

so so, let us if I if I even if I you know, like forget this complication right now and just

assume that there is 1 element in the cache line. Then, I can just write that XOR of P 0

XOR with K 0 is same as that of P 4 XOR with K 4. And therefore, I can write that the

XOR of K 0 XOR with a K 4 is same as that of P 0 XOR with P 4.

So, what does that tell us? That tells us, that K 0 and K 4 are now not independent. That

means, if I have a knowledge of K 0 then I know the value of K 4. So, therefore, right, it

implies that essentially what it implies is that now if you assume that the entropy of K 0

was initially n bits and the entropy of K 4 was initially also n bits. That means, initially

we are a 2 n bits of entropy.

Now, because of this information leakage, this suddenly shrinks to n. In a more realistic

scenario where I consider multiple cache lines ok. So, there so, there what will happen is

that suppose, initially you had an entropy of 2 n, that will reduce to n plus delta. So, that

delta essentially is because of the fact that, in a cache line there are multiple multiple

values which I am not able to discriminate. So, essentially I will not have information

about those bits.



But, at the same time right, definitely there is an information leakage because of this.

And therefore, that implies that this can be potentially dangerous. Even if there is a cache

miss, that means you know, like suppose, an access takes more time I can in that case

right, an inequality. Where it means that the XOR of P 0 and K 0 is not equal to the XOR

of P 4 and K 4. Even that is a leakage because that tells us that K 4 cannot take certain

values which is also equivalent to the leakage of of the unknown key.

So, therefore, right, in both cases we see, even if there is a cache hit or a there is a cache

miss there is a potential leakage which we need to kind of take care of.

 (Refer Slide Time: 14:08)

So, depending upon you know like different kinds of cache attacks or the, you know like

different of the presence of cache. There are different types of cache attacks which has

been defined. So, here is a quick sort of you know like quick nomenclature of some

important class of attacks.

For example, we have got cache trace attacks, we have got cache access attacks and we

have got cache timing attacks.



 (Refer Slide Time: 25:32)

So, let us take a quick look in between them. So, the cache trace attack essentially stands

for the fact that suppose, I do a simulation. And I basically somehow, you know like for

all the accesses that a block cipher makes, I am able to kind of understand whether they

resulted in a cache hit or a cache miss. For example, right, if I implement AES and in

particular, the AES s box as a table. Then, that means right, for example, every round of

AES makes 16 look ups or 16 tables accesses.

So, if there are like 10 rounds, then I would expect that there are 160 accesses that the

AES is making. Or 160 table accesses that AES is making. So, now, now what I am

trying to kind of do is, I am trying to kind of do a trace analysis. By you know, like

measuring maybe that power consumption of the system. And and I am assuming that if

there is an suppose, you know like there is a cache miss. Then, that results in a shoot in

the power line. So, what happens is that if I observe the power line and I I see several

accesses. Then and suddenly if I get a kind of overshoot, then I reckon that or suspect

that, that is because of a cache miss.

So, if I have got this ability, then for all this 160 accesses in AES, I am able to know, you

know like the pattern of hits and misses. So, what have been happen is that the 1st access

is a miss, then I get a hit, then that is a miss, there is a hit and so on. So, you know, like I

have got a trace, I have got a history of you know, like whether the the accesses resulted

in a  cache hit  or a  cache miss.  So,  these class  of analysis  or  these class of  attacks,



basically what they do is. They take this cache trace in as an input, then the take the

block cipher. And then, they make an analysis to understand whether they they can use

this extra information to to retrieve the key ok.

So, these class of attacks are what are called as cache trace attacks.

(Refer Slide Time: 16:23)

So, there is another class of attack which is called as cache access attacks. And probably

this little bit more common or well known which essentially resulted from a work by

Osvik. And therefore, you can be referred also as Osvik’s attack. So, what it does is,

basically it uses a spy program to determine the cache behavior. So, it is kind of an attack

where  we  assume  that  both  the  target  of  the  victim  and  the  attacker  or  the  spy  is

essentially co resident and is working on the same hardware platform. It can be pretty

much happened particularly right, because of the advent of cloud and other infrastructure

which we often share with our adversaries.

So, in this case, what happens is that, initially the spy makes an access to the micro

processor. So, it  kind of fills  the cache memory with some garbage data and then it

allows  the  AES to  execute.  So,  when  the  AES executes  it  of  course,  makes  certain

accesses and that implies that it kind of evicts some locations from the cache memory.

And therefore,  when the spy comes back again and executes. And remember that the

since the spy is you know, like when the spy executing and it can again, it remembers the

accesses accesses where it originally made. And therefore, it can time its own accesses.



Because, you know like, so the spy is not really timing the you know like, the accesses

which AES was making. But, is timing the access accesses which it is it is itself making

ok.

So, therefore, right what will happen is that, since these locations where you know, like

when the spy comes up and it finds that the time is more. Then, it will potentially suspect

that there is a cache miss, which means right the AES has evicted those those locations,

those locations from the cache memory. And therefore, it kind of you know, you know

we we, will give us the footprint of the AES execution. Where AES executed and where

AES did not execute ok. And therefore, right, now we can combine these with something

that we already saw. That when we basically build those equations of P 0 XOR with K 0

equaled with maybe P 0 XOR with K 1 or is not equal to P 0 P 1 XOR with K 1. And

from there right, can basically reduce the entropy of the entire AES-128.

So, therefore, right this essentially is quite devastating attack. And these kind of attacks

are often called as the prime plus probe attacks.

 (Refer Slide Time: 18:39)

So, now there are different variants of, as I said different variants of cache attacks. There

is another very important class of attacks, which is called as cache timing attacks. And

this is even more powerful because it basically kind of claims that it can potentially work

over  the  network.  And  essentially  therefore,  can  be  used  to  attack  a  remote  server

potentially.



So, this is the again you know, like straight from the text book. We remember that. if I

ask you right, that there is a bunch of instructions and then you know like what is the

execution time because of that. Then, our text book tells us that if the access time for the

cache memory is T h and if the access time for the cache I mean when there is a miss

right, is T m. And if the number of hits is N h and the number of miss is T m is N m.

Then, the total execution time is is obtained by multiplying N h with T h and then we add

N m with T m, plus some noise. This K stands for some thing which I am not able to

exactly model. And now imagine that what, this is the scenario of the attack.

So, basically there is a remote server which is running an encryption software. And there

is a remote attacker, who basically establishes a network. So, this could be potentially

even by something as common as by as as as a TCP network. And then, basically sends

packets to the server to encrypt. And then, when the server sends back the cipher text,

along with it, it also obtains the timestamp or the time of you know, sending the data and

receiving the packet back. That means, you know like, it basically tries to do a statistical

analysis or the attacker tries to do a statistical analysis to know what is the time which

the encryption took in in the remote server. And then, it basically tries to kind of do a

statistical analysis to retrieve the key from there.

So, this as you can see right, is a quite you know like, a very practical attack model

because apparently right it can potentially work on over the network. So, as we will see

in more details right, in this class of attacks we actually make also an assumption. The

assumption is that, the attacker has an access to a similar looking software or similar

looking server ok. With exactly the same specifications which it has pre characterized ok.

So,  it  basically  can  in  in  that  particular  target  server,  it  can  therefore,  make  a

characterization with an with an example of a  known key ok. And then,  it  basically

targets the victim server where the key is not known. So, it is kind of similar to the

template attacks that we have seen in the context of side channel attacks.



 (Refer Slide Time: 21:10)

So, this paper or this work was primarily initiated by Bernstein in a work in 2005 which

showed that, how we can perform a cache timing experiment.

So, let us try to understand this with a example of AES. So, in AES as we know that, so,

in particular AES-128 we know that, there are 16 bytes of input or plain text. So, what

we do is, we take one of the bytes for example, say P 0. And I want to obtain the value of

K 0. That means, the 1st byte of the secret key. So, therefore, the remaining part, that

means, the remaining 15 bytes of the key, I I make the I make several iterations of them

ok.

So, therefore, what I do is, I initially fix the value of P 0. And for the remaining 15 bytes

I just make large number of variations. So, I probably I I I make 2 power of 15 choices of

the remaining remaining plain text bytes. And then, I I I apply it you know, I apply the

AES engine on those plain text. And then, I also observe the timing corresponding to

each of this encryptions. And then I take the global, I take the I take the average of all

these encryption times. And then I plot them in the form of a of of a timing characteristic.

So, what I do is, I basically take all the values of P 0. So, initially suppose P 0 is 0 and

then I  basically  make 2 power of 15 variations  of the remaining 15 bytes.  I  get  the

average timing. I plot that average time. Likewise, I again change the value of P 0 to

something else. And then you know like, again I apply 2 power of 15 randomly chosen

values of the inputs, keeping this this value of P 0 as constant to maybe 1. And then I



again obtain an average several timings and then I take the average of that ok. And then I

plot that.

So, then what I do is, I I essentially kind of you know like pretty much fix P 0 to all the

256 values.  And then,  I  obtain  this  graph which is  like,  which is  called  as a timing

characteristic of the zeroth byte. Note that, when I am observing this timing, in order to

remove the effect of noise, what I do is, instead of plotting or you know, like plotting the

average time. I also compute the global average and then I deduct the global average

from that individual average time.

So, therefore,  right,  this  is  just  a  de-noising technique.  And therefore,  we obtain the

characteristic of the plain text byte b 0 and as written here, we obtain the deviation from

the mean time. That means, from the global mean time. So, it is very interesting to see

this timing characteristic. For example, you can see that there are certain bundles ok. And

potentially these bundles are because you know like, there are some data in the in the

cache line which are difficult to distinguish. And therefore, they have a similar kind of

timing behavior.

 (Refer Slide Time: 23:53)

So, now what what we do is that, again as as you remember that in the cache timing

attack model, we assumed that there is a target server. Where you can do a templating

process, which means you can fix the key to 0. You can derive a timing characteristic as

we have seen. And then now you make a target that means, you do not know the key and



therefore, you repeat this experiment. And then again obtain the characteristic. So, you

will find that the characteristics in both cases are pretty simple, except that one of them is

a shift of the other. So, if you are able to measure the shift by applying some kind of

standard  correlation  technique  right.  And  if  you  correlate  these  two  results  then

potentially, you get the zeroth key byte. Because, you basically get the XOR of this key

and this key and since this key is held to 0, you actually get the unknown key ok.

 (Refer Slide Time: 24:47)

So, therefore, the shift is what we measured. And the shift essentially stands for your

unknown secret key. So so, therefore, this is a very interesting attack and therefore, right,

people have kind of tried to analyze why cache attacks work on AES. So, for that right,

let us just recollect the structure of AES. This is the structure of AES and then we have to

kind of understand how do we implement AES for software.

So, for that right, we note that, this byte substitution is or can be implemented potentially

as 16 bytes from a 256 byte lookup table ok.



(Refer Slide Time: 25:15)

 And in fact, right, you can actually implement using bigger tables. So, if you just look,

take  a  look  into  OpenSSL,  which  is  a  repository  or  several  cryptographic

implementations. And, if you look into the implementation of AES, then you will find

that it is implemented or every round is implemented using 4 look up tables.

For example, let the input of the round transformation be denoted by a and the output of

the sub bytes by b. Then, we know that every byte like the input byte, is basically getting

modified by the S box of Rijndael or AES into say b i, j. So, a i, j here stands for the

input and b i, j stands for the output. Again, as you can understand that i can vary from 0

to 4 and j can vary from 0 to 4. So, N b here stands for 4 and therefore, we have got 6 16

cross, 16 byte wise organization of AES as we have already previously seen.

So, now if we apply the shift rows, then we know that every byte here gets shifted. For

example, this is essentially b 0, j plus c 0. So, c 0 for the zeroth row stands for 0 because

in the zeroth row there is no shift.

For the 2nd row there is a shift by one location. So, c 1 stands for 1, c 2 stands for 2 and

c 3 stands for 3. So, therefore, right, this column stands for b 0 comma j plus 0, that is j.

This stands for b 1, j plus 1. This stands for b 2, j plus 2. And this stands for b 3, j plus 3.

And  therefore,  right,  if  we,  in  that  way  you  basically  accommodate  the  shift  rows

operation.  And then you have to perform a mix columns. The mix column basically

performs on this particular  column. And you basically  multiply this  matrix,  which is



already pre known. You multiply with this particular column and you get the values of ds

ok.

So, this is essentially your output. So, now, the question is right, you can definitely write

a code where I do this  operations individually. But,  it  turns out that it  in software it

becomes much more efficient if we can implement the entire mapping by look ups.

(Refer Slide Time: 27:17)

So, therefore, right, here what we do is, is illustrated over in this particular slide. So, you

can see that, what we need to do is this. Because, this essentially is nothing, but S RD

applied on the corresponding input bits. So, S RD stands for the S box of AES or S box

of Rijndael.

So, therefore,  right,  any byte here like,  this column for example,  can be obtained by

multiplying this column like 2, 1, 1, 1, 3 with this byte ok. So, this is the byte standing

for the zeroth value or the zeroth row. And likewise, the 2nd, and then you XOR this

with this column, that is, 3, 2, 1, 2 multiplied by this should be 3, 2, 1, 1, 1 actually ok.

Because, I I should multiply 3, 2, 1, 1 here. So, let me correct this. This is 3, 2, 1, 1 ok, 3,

2, 1, 1.

So, we basically multiply this column with this byte and that is essentially shown over

here ok. Likewise, you multiply this column with this byte and that is shown in over

here. And finally, you multiply this column with this byte and that is shown here.



So, note that each of these look ups essentially takes a 256 bit, I mean an 8 bit input. And

results in a 32 bit output ok. And these mappings can be shown here as 4 tables, T 0, T 1,

T 2 and T 3. And this essentially stands for look ups where the input is 8 bits and the

output is 32 bits. So, therefore, it turns out that every table here takes 1 kilobyte amount

of memory. And therefore, totally right, it takes 4 kilobytes amount of memory.

So, therefore, the AES in OpenSSL essentially has been implemented using these tables.

And that implies that, there are 4 table accesses that you are doing per round ok. And that

implies that, if you take 9 rounds, remember the last round cannot be implemented in this

way because in the last  round there is  no mix columns. So, therefore,  right,  you are

making 4 into 9 4 into 9 that is 36 accesses of various look ups ok

So, there is a significant amount of cache activity that happens because of these kind of

implementations which can be targeted by the attacks that we are currently discussing.
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So, therefore, right I mean so, if you do this then potentially what we what. So, if you

now  take  therefore,  you  know  like  try  to  execute  AES  with  this  4  kilobyte  table

implementation and consider two different runs of the encryption. So, remember if I just

kind of store that as N t as a total number of you know, accesses. Then, we know that N t

is nothing, but the summation of the number of misses plus the number of hits in an

access.



So, therefore, N t is a constant right, because the total number of accesses that you do to

the tables remains a constant for that algorithm. So, therefore, what I can do is, I can

replace N h with N t minus N m. And therefore, I can rewrite this equation as N t into T h

plus T m minus T h into N m plus that constant K. So, if I take two different runs of the

encryption and if I kind of take the difference between these two runs, then this part

would  cancel  because,  this  part  is  a  constant.  I  will  only  have  an  effect  on  or

proportionality the on the number of misses.

And what we find is that, if you take an if you do these experiments. That means, if you

take the number of misses and do a frequency plot. You will find that there is a nice

distribution of the number of misses which means there are number of misses varies

across execution. And that is partly happening because you know like, your table is big.

And therefore, right, it may happen that you know like, the entire table right, essentially

is creating this nice distribution. And therefore, because of this various variation in the

number  of  misses,  you  actually  get  varying  times,  which  can  be  exploited  by  the

adversaries to know whether there is a cache hit or a cache miss. And also to perform

you know, like a correlation kind of attack that we see in the case of Bernstein’s timing

attack.

On the other hand right, it is very interesting to know. So, cache attacks right, we kind of

suspect will work because of this kind of varying execution time.

(Refer Slide Time: 31:18)



What if I implement AES with a very small table, like maybe a 256 byte. That means, I

just implement the S boxes table and the other things I do by computations. If you repeat

this experiment, then you can expect that the now, the number of misses will become a

constant. Because, this table size is not 256 and if you expect for modern cache has right,

you will have a cache line size something like 64. Then there will be like, 4 number of

misses that can happen. And therefore, right, as we know that there are several accesses

that  you are doing, like 36 accesses.  That means,  like 4 will  remain a constant,  that

means,  every  time  you  do  this  encryption,  you  will  always  get  4  misses  ok.  And

therefore, the variation will go.

So, for example, if you make a plot now, you will find that around 4 you will get a peak

and there will be no other things that will occur. So, the question is right, can you still do

an attack on this? Because, the encryption time looks like constant. And therefore, if you

vary, then it seems that the cache attack becomes much more difficult. So, now, what we

will  study  in  the  next  discussion  is  that,  how  we  can  still  attack  these  kind  of

implementations. In particularly, what we what we shall be discussing is that, we shall be

trying to look into some modern micro-architectural techniques, which actually helps us

in doing attacks even in those cases. So, that we will take up in the next class and.

Thanks for your attention.


