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So,  welcome  to  this  class  on  Hardware  Security.  So,  we  shall  be  continuing  our

discussion on fault tolerance with respect to cryptographic implementations.

(Refer Slide Time: 00:23)

So, we shall be starting to discuss with where from we left last class that is Robust Code

for AES, we shall be talking about Time Redundancy Countermeasures and also Biased

Fault attacks and eventually on differential fault intensity attacks.
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So, to start with we have already kind of seen how to apply like parity for in the context

of AES and as we discussed right parity never gives us like you know like 100 percent

coverage.  In fact,  right it  is very difficult  to develop codes which gives 100 percent

coverage, but the advant, but the thing is right there is a quite significant portion right

when linear codes or there is a significant population of faults, which are missed in such

kind of parity based detections right.

For example if you are just checking for even parity, you know that you know like if

there is like for example, 2 bit faults for example, you can never catch them because the

parity right if in case of 2 flips, we will remain the same it will not change and therefore,

right it can bypass get bypassed. So, therefore, right there was an alternative strategy

which was published in a paper in dependable systems and networks in 2004 and there

are some falling works also, which basically tries to develop what are called as non-

linear codes in the context to such kind of protections. So, I will just try to give kind of a

very  brief  overview on how it  works.  So,  let  us  see  right  how we can  kind  of  for

example, adapt it.
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So, we know that you know like when we talk about linear codes, we basically very

briefly right has got. So, we have got a binary linear n comma k code for example,. So,

this is an binary linear n comma k code with say 2 k which is greater than equal to n.

So, these are you know like useful constructs which are used in the context of linear

codes and we have got you know like a what is called as a check matrix and this is a very

usual matrix which is used and this has got two components. One is say P of n minus k

cross k and that is followed by an identity matrix which has got a dimension of I n minus

k cross n minus k  and this is usually defined over GF 2; that means, the elements here

are binary elements.

So, this you can easily understand has we will have got the dimension of n minus k cross

n.  So,  now,  if  you  take  this  matrix  the  idea  is  that,  you  essentially  can  define  a

corresponding matrix which is called as the generator matrix which is essentially denoted

as in this way there is suppose this is I k cross k and that is followed by say P n minus k

cross k ok. So, this totally will have dimension of n cross k. So, you can easily verify that

if I do H into G like if I multiply H into G then I will get this as kind of you can write

this as P concatenated with I multiplied with I and followed by P.

So, this is basically P plus P. So, therefore, this is equal to 0. And so, what we do is that

suppose there is a message m and we basically kind of transform this message into a

corresponding code word for the message by you know like applying your generator



matrix G and basically getting Gm for example,. So, now, you can basically see that,

what we do is that basically kind of compute what is called as a syndrome on the code

word by taking these Gm and applying the H matrix on it that is applying the check

matrix on it. Now since H of G is equal to 0 I get the syndrome as 0.

On the other hand if right there is an error if because of an error if because of an error

what happens is that, this code word gets kind of polluted to something like c plus some

error e then when you apply the check matrix on c tilde you get H of you know like you

basically have c plus e and as we know that H of c will be equal to 0; we get what is

called as H of e and this is essentially a non 0 term and that kind of kind of alarm such

that there is an error.

So, now the question is right and without going into details because this is you know like

subject in itself; we know that you know like the number of undetectable faults or you

know like undetectable errors  is equal to 2 power of k and the number of detectable

errors there is detectable errors actually you know like interestingly with probability 1

because for sure they can be detected, we have got something like the remaining thing

that is 2 to the power n minus 2 to the power of k that is all of them would be detected,

but at the same time there are 2 to the power of k errors which are not detectable. So,

then here we you know like bringing the concept of what is called as non-linear code. So,

this is an example of this was an example of linear codes. So, in non-linear codes you

basically  try to kind of you know like increase the or rather decrease the number of

undetectable errors I will be right.

You basically kind of you know like for the remaining errors which you can detect you

can afford some amount of probability of missing them. So, the idea is that here you

basically take the; so the linear code for example, the linear code V is converted to a

converted to a non-linear code to non-linear code, again I denote it as n comma k and

write  that  as C V So,  I  will  give  an example  which we often use in  the context  of

cryptography and.
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So, this example essentially is or in the context of fault tolerance for cryptography is

based. So, let me let me denote it as C V; where C V is nothing, but x comma w where x

suppose belongs to GF 2 to the power of k. So, that is for example, in AES there is 2

power of 8 and then I calculate this w by applying a matrix transformation denoted as P

on x and then performing finite filled cube.

So, this essentially belongs to GF 2 to the power of r. So, there is kind of a complexion

and then followed by in like converting this into GF 2 to the power of r. So, clearly you

can see that which kind of errors will basically get missed. So, if you observe that. So,

that would mean that if there is an error. So, consider there is an error and this error is

denoted as say e x and e w.

So, that would mean that suppose I have got x and w here, I basically make an error in x

and I make an error in e w such that this resulted term also fault faults in this code word

then it  cannot  be  detected.  So,  for  example,  what  will  happen here  is  that  this  will

become x plus e x, and this will become w plus e w and; that means, that now the code

word for x plus ex will be P applied on x plus e x and then I do an whole cube on that

and that should be equal to w right plus e w; that means, you know like w plus e w if that

happens right then it cannot rejected because this is the corresponding code word for it,

but then this also becomes a valid code word and therefore, this also belongs to C V. And

what is w? W is nothing, but P x whole cube plus e w.



So, if you basically make an analysis of this equation and see like how many are possible

solutions and which essentially can you know if any solution for this will be missed. So,

therefore, in error which essentially kind of satisfies this equation will be missed by this

code word. So, therefore, right if I just summarize the result, here we will see that the

number of undetectable faults right. So, remember right in the previous case right it was;

in this case right this is 2 to the power of k minus r and the number of errors which are

detectable with probability 1 probability of 1 is equal to 2 to the power of n minus 1

minus or plus 2 to the power of n minus 1 minus 2 to the power of k minus r and the

number of. So, interestingly right you will have some errors or number of errors which

can be detected detectable with a probability of 1 minus 2 to the power of minus r plus 1.

So, that is not exactly one, but still right there will be some cases which will like;. so that

there is like 2 to the power of n minus 1 minus 2 to the power of k minus 1 ok. But the

number of undetectable faults is 2 to the power of k minus r and if you remember right it

was previously 2 to the power of k in that case of linear codes and that essentially gets

significantly reduced.

And  that  is  why  right  people  have  tried  to  apply  such  kind  of  techniques  and  get

interesting designs. So, now, with this background right we can basically see the design.

So, here you can see that this is your cubic function which has been used for example,

there is a cubic function here used and here is a cubicle function has been used, but

before that there is a compression and L-Compress.

So, what are this? So, the L-Compress or the compress as I have said just now; soif you

remember like the in the mix columns what did we did basically? We basically found out

the parity of every byte there and the compress function is nothing, but it basically kind

of XORs the parity of each of these columns.

So, you saw that you know like it does not change for the mix columns and therefore, I

do basically get a mix column for I mean a parity for this column that is denoted as L 0,

now this is denoted as L 1 and this is denoted as L 2 and this is denoted as L 3. So, totally

we have got you know like you know like you have got a parity for 4 bits here, you have

got a parity I mean for 1 byte here and so, on right and therefore, if you basically taken

XORed of all these things right and then you get L 0. So, these total set is essentially



what do you get at the output of this complex function and that is followed by an L-

Compress and  this L- Compress is nothing by a map.

So, therefore, imagine that this is say you know like say r bits for example; you would

like to compress this into r L where r L is less than r. So, therefore, you just kind of

multiply this output by a matrix whose dimension is say r cross r L. So, and then you get

this result which is r L and then you perform the usual cubic operation and then you

basically check. So, this essentially together stands for something like your P as I just

now denote it and likewise here. So, then you finally, do a check and the idea and the

results say that there is a significant improvement because of this, and this is essentially

leveraged in some of the designs.

(Refer Slide Time: 12:38)



(Refer Slide Time: 12:40)

So, therefore,  the idea is that the; so the question is right there are several detection

techniques as we have seen, but the broad the bigger question is right does detection

always guarantee security.

(Refer Slide Time: 12:49)

So, here we will bring the idea of what is called as we will discuss in the taking one of

the  redundancy  techniques,  which  is  very  popular  and  that  is  the  time  redundancy

countermeasure.  So,  as  we  have  seen  that  here  we  do  an  original  computation.

Computation we again do it by re do it by a redundant computation and then we check.



So, they can be two strategies I can take; if it is not equal. So, one of them could be that I

suppress the output, but a more or better way would be to randomize the output. So, the

attacker even does not know right because even if you suppress an output; that means,

the attacker  knows that there has been a fault  in one say that is also an information

leakage. So, a better strategy would be to randomize the output, but; however, we know

for most part of our discussion right I will assume that the output has been suppressed.

But  it  can  be  kind  of  extended  to  even  for  that  case  where  the  output  has  been

randomized.

(Refer Slide Time: 13:41)

So, what we do is that, if there is a mismatch then we basically you know like suppress

or randomize the output, but if there is a match then we generate the output.
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So, then the you know like the reason one of the reasons why we kind of show here as

you know like red here is that, this is fine because you know like if you are suppressing

output than attacker does not get any information, but what we need to analyze is this

situation.  Where  there  is  a  match  right  and  that  record  gives  an  output.  So,  now,

remember that this match is kind of assumed by the designer is that if there is a match

the designer is kind of assuming (Refer Time: 14:17) there has been a no fault, but in

reality  what can actually  happen is that there are two faults  and these two faults  are

cancelling each other.
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So, one can argue you know like what would be the probability of such kind of fault

collision. So, imagine that you know like you know like you have got two possible stay

you know like possible status states and you would like to calculate the probability of

fault collision; that means, right you would like to kind of calculate the probability of

two identical faults in the original as well as in the redundant round.

So, you can easily work that out,  imagine that suppose you have got you know like

possible faults  denoted as say f 1 to f  N. So, this is your all  possible  faults  and the

probability of inducing each of the faults are suppose denoted as p 1 to p N.

So, then we know that the probability that you basically inject the same fault in both

occurrences can be found out by the sigma of pi square. Because you know like it is

basically like you are you are kind of you know like inducing the same fault suppose you

are inducing the fault belong in f 1 in both the redundant as well as the correct operation

or  the  actual  operation;  that  means,  in  the  original  and  the  redundant  round  that

probability would be p 1 square likewise similarly for f 2 this will be p 2 squared. So,

therefore, if we add it up right we will get sigma into pi square.

Now observe that are variants of the fault distribution also can be written as sigma of pi

squared by N, suppose there are N possible faults and this is equal to nothing, but minus

1 by N whole square so that means, that sigma pi squared can be easily calculated as N

multiplied by the variance plus 1 by N. So, therefore, the probability of the collision; so

let me write this as probability of collision is N multiplied by the variance plus 1 by N.

So, now note that when the variance is 0; that means, when you have a uniform fault

distribution, then this probability would be equal to 1 by N; that means, like suppose you

have got an if you consider the AES state matrix where there are you know like 2 to the

power of 128 possible faults right then this probability is negligibly small. But at the

same time one should be careful that if I observe a variance; that means, if I kind of

increase  a  bias  in  my faults  distribution,  which  can  be  measured  by  these  variance

statistic then I can actually increase the probability of collision significantly.

So, therefore, if the variance increases then the probability of collision also increases.

And that essentially  something which is  kind of stated over here as the non-uniform

probability  distribution  of  faults  in  the  fault  space,  with  enhance  the  fault  collision

probability we would like to therefore, take care of such kind of scenario.
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So, therefore, right if you take this into account. So, therefore, right this is the classical

scenario where all faults are equally likely then this probability because the variance is 0,

the probability of fault collision is equal to 1 by N which can be small; however, right

what we what we can observe is that if we.
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So, here is an example to show you know like that the variance is a measure of this

biasness in the fault distribution. So, imagine that you have got a fault model where all

the  faults  right  like  f  1  to  f  8  occurs  with equal  probability  then  the  variance  is  0.



Whereas, you can observe that this is a more biased fault injection where as this even

more because there is certain faults which never occurred then the variance increases

further. So, therefore, variance is useful measurement for the degree or bias in the fault

model, and as we observe right then the priority of fault F 1 equal to F 2 is equal to this

directly  proportional  to  the  variance.  So,  therefore,  if  the  variance  increases  this

probability of collision also increases.

(Refer Slide Time: 18:06)

So, what is the adversarial of perspective of this? So, you have got a precise fault model

versus a biased fault model and the question is right whether you can exploit this.
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So, this brings us you know like what is called as fault intensity and gradually we will

this define what is called differential fault intensity.

So, this is based on the work which is published an FDTC in 2014 which define what is

called as fault intensity. The idea is that if you take a; say let us consider a combination

of logic is got a 4 input and 4 bits output and then gradually we start to increase the clock

glitch; that means, we try to kind of increase the you know like try to induce a fault by

you  know  like  a  clock  glitch  for  example.  Similarly  I  can  do  it  for  maybe  other

mechanisms like voltage glitch and so on but let us consider a clock glitch here and you

can see that, the fault which you are observed in the output right is not really random

which we have been assuming in the in the context of differential fault attacks.

So, what is shown here is that if you are increasing the clock frequency for example, the

first line which fails right is the critical which is in the critical path the means we just got

the maximum latency. If we increase it further right it is most likely than the next one

will fail and therefore, right if we even if you repeat this pattern, you would expect a

probable you know like a probable repeatable pattern.

And more importantly using the clock injection frequency, you can actually control the

number of bits which are getting affected. For example, if the after I have done a bit of

characterization, I can you know like probably inject the clock frequency or operate it in

a situation where I get you know like faults which are like this, which is like a single bit



faults for example, or maybe you know like faults which has got 2 bits maximum, which

I give which get corrupted.

That means, right I am trying to kind of induce faults which are biased and not really

random and that is a very important thing. Because you know like when we talk about

classical fault tolerance,  then we basically assume that all  faults are equally probable

because you know like in nature, largely the faults are kind of unbiased. But when we

talk about fault attacks or fault tolerance in the context of cryptography, one thing which

we have to  keep in  mind is  that  the  adversary can  accordingly  manipulate  the  fault

injection and hence can bias the fault injection. And therefore, we have to kind of revisit

the  fault  tolerance  techniques,  keeping  these  kind  of  biased  nature  in  the  fault

distributions.

(Refer Slide Time: 20:29)

So, therefore, right this brings us to what is called as differential fault intensity attack, it

basically combines fault injection and the principles of differential power attacks or that

we have as we have seen original side chain attacks. It basically induces bias faults by

varying the fault intensity, it applies a hypothesis test with bias faults and uses biased

faults as a source of leakage.
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So, let us see how it works. So, there are two steps in this particular attack; in the first

step right you basically do a fault injection which is biased. So, this would probably

happen more right in case of when you have got a low cost fault injection techniques,like

voltage glitch or clock glitch or even in the case of maybe an Nem injection; you will see

that which is not very controlled well. So, you will see that for example, you will have

what f 1 to f Q all these are different fault intensities right; and when you are injecting

the fault what is happening is that the state is getting corrupted and therefore, you are

getting  say  Q  such  injections  and  all  of  these  injections  have  gone  you  know like

apparently a biased nature in the faults. That means, probably you are getting you know

like by a fault here which is you know like maybe a 1 bit corruption or 2 bit corruption,

but it is not random; that means, all faults or not occurring here with equal probability.

So, therefore, you get correspondingly faulty cipher texts; note that this attack right is

very  kind  of  significantly  different  from the  classical  DFA in  this  in  this  aspect.  In

classical DFA we basically do an attack where we have got the place we have got the

faulty cipher text and we also have the correct cipher text, but here these attack works

only on the faulty cipher text.

So, imagine that are got like C 1 to Q like and all of them are faulty and therefore, they

are denoted as C 1 dash to C Q dash so. So, now, there is a step 2 of this attack in the

step 2 of this of this attack we do a hypothesis testing with biased faults. So, what we do



here is that. So, this extraction is something like that have a side channel attack or side

channel  analysis.  So,  you  basically  guess  the  correct  key  and  you  and  it  helps  in

observing the bias in the fault distribution. So, the idea is that if you are able to correctly

guess this key then when you kind of invert back; that means, we XOR the cipher text

and you take the inverse SBOX and you come to the location or the site of the fault

injection remember here was the site of the fault injection and the input of this SBOX.

You should be able to see these biased. And if you are basically making a wrong guess

then you will not see this bias you will basically see a random distribution. So, a useful;

so, you will basically for that you need a distinguisher as we used in the context of DPA.

So, one of the very common forms or distinguishes which is used here is this, that is you

basically guess the key that is shown here as K tilde, you take the faulty cipher text, we

applied the s box inverse and you find out this S tilde and then you accumulate all of

them and then you basically take the sigma of the hamming distances of this.

The idea would be that this hamming distance right you are basically assuming that you

are operating in a region where this hamming distance is small. So, therefore, you would

assume that  this  sigma that  you know like  that  should  be  minimized  when you are

correctly guessing the key; that means, for the correct guess of the key this particular

parameter sigma of the hamming distance of S tilde should be minimized.

So, therefore, you can again you know like applying a similar to what we have done in

the DOM or in the correlation attacks; you can basically kind of arrange the keys or rank

the keys with respect to which basically  minimizes this parameter. And the one with

minimize is most you know which gives the minimal output is the candidate key.
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So, likewise right you can; we will see how we basically experimentally verify it. So, we

basically  kind  of  considered  two  situations.  In  situation-1  we  will  assume  that  the

attacker has got no control on the target byte and in the situation-2 we will assume that

the attacker has got or in the first situation the attacker has got control over the target

byte. In that situation-2 the attacker has got no control over the target byte. So, now, what

we observe here is that, we basically considered you know like different kinds of fault

models. So, for example, the fault model can be a single bit upset, it can be a single byte

double bit upset, it can be a single byte triple bit upset it can be a single byte quadruple

bit upset and there can be other kind of byte faults also possible. In particular let  us

consider about the SBU or which is the Single Bit Upset fault model.

So, of course, you can understand that if I have got a fault model which is more precise

than it  is  also more costly to achieve.  So now, we basically  again as I  said that we

basically kind of characterize our device and we see that, in situation 1 where we assume

that the attacker has no control as got control over the target byte I need lesser fault

injections to get my required faults. Whereas, in the situation 2 where I am basically

more haphazard in my fault induction I require more faults, but at the same time right

this is pretty manageable and within this faults right I am able to create such kind of fault

injections.



(Refer Slide Time: 25:34)

So, now what we basically considered these and see how it kind of helps us to do the

attack. So, this is the hardware that we will be considering again remember this is the

just a recapitulation of our old design is an iterative architecture, we again use an on you

know like an arbitrary function generated to inject the first clock and then we basically

use the ChipScope Pro to basically monitor the internal faults.

(Refer Slide Time: 25:53)

So,  then  we  basically  do  the  same  attack.  So,  remember  that  we  basically  pre

characterize the device we kind of know that if the device is in this particular frequency



range or operated in this particular frequency range, then with more probability we get

faults  which  are  of  the  single  bit  upset  nature.  And  likewise  there  are  other  fault

characterizations also shown here in this table. And then we basically target that this

particular implementation in both the original and the redundant rounds.

Remember  these  are  time  redundancy  which  has  been  implemented.  So,  now,  we

basically kind of inject a fault in both situations and, but whenever we are injecting right

we are basically ensuring that the operating clock is in this region of one say 125.32

125.4 Mega Hertz. So, you can see that I am operate trying to operate in a region which I

know that is more probable to create single bit upsets and then basically I start guessing

the key, and as I said that I would like to minimize the humming distance or I can also

use another alternative parameter which is called as the squared Euclidean imbalance.

So, I would try to kind of maximize this parameter.

Because  you can see  that  you know like  if  the  guess  is  random then this  would be

something like 1 by 256 and therefore, this would be pretty much going to 0, but on the

other hand right if my guess is correct then this I will get a you know like a non zero

value here and if I add up all those non zero squares right then I should get a larger value.

So, therefore, in this case the correct key would minimize this parameter of H k, but in

this case the correct key would kind of maximize the parameter S k. So, you can actually

use both the matrix or both the distinguishes together just to increase your confidence.
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So, then what we observe here is that we kind of do a simulation. So, in the simulation

right we are basically assuming that an identical fault as we introduced into both the

original and the redundant round, this is not a non actual hardware. And we observe that

typically these are the number of faults that you require to get the AES key extracted. So,

you can see that the fault number of faults here is much more in that in the classical

DFA, but you can assume that here there are certain advantages which we did not have in

the case of DFA.

(Refer Slide Time: 27:59)

So, likewise right you can actually’ so we also need you know like a simulation 2 where

you know like we are basically varying the degree of bias by you know like controlling

the variance and then right we basically plot them.
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And here are some plots to observe here you can see that if I increase the number of

variance in both the cases right whether it is a scenario 1 or scenario 2 where you have

got perfect control on the byte fault or you do not have perfect control on the byte fault;

in both the cases the number of faults is reducing because as we have discussed right that

if  you  increase  the  variance  than  the  probability  of  successfully  defeating  this

countermeasure  is  more  and  therefore,  you  need  lesser  and  lesser  number  of

observations.

(Refer Slide Time: 28:38)



In fact,  you can observe this  also on validate  this  on actual  data.  So,  this  particular

column shows that what happens, what happens when you actually do it on a real life

implementation with fault countermeasure using time redundancy, and you can see that

the observations match pretty much with your theoretical simulations.

(Refer Slide Time: 28:59)

So, therefore, right I mean the comments just to conclude right some of the comments

would here would be that, the bias of a fault model can be quantified in terms of the

variance of the fault probability distribution, and detection based countermeasures are

vulnerable against biased fault attacks that are practically achievable.
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So, the question is right what do you really want to do? You will basically want to cover

all of the essential what we do in classical fault tolerance or do you want to really cover

almost all. So, therefore, in a classical fault tolerance we basically do almost all that is

we kind of try to pretty much covered almost all, but what may happen is that, what we

probably need to do here is that we probably need to cover all of the essential. Because

you know like  in  faulted;  in  cryptography or  security  right  even if  there  is  a  small

window of you know like of an attack and the attacker can actually exploit that window

and can you know like collapse the entire security of your system.

(Refer Slide Time: 29:50)



So,  to  summarize  we  have  discussed  about  DFA in  the  previous  classes,  where  we

basically  induce  a  fault  observe  the difference  of  the correct  and faulty  pairs  derive

equations to obtain the key.

On the  other  hand what  we discussed in  today’s class  is  what  is  called  as  DFIA or

Differential Fault Intensity Attack. So, here we obtain non uniform-faults or biased faults

you can see that, it is a difference from the DFA where we assume random faults through

non-expensive  techniques  and  then  we  performed  side  channel  analysis  like  power

analysis to exploit the bias.

(Refer Slide Time: 30:20)

So, to conclude detection based schemes are a popular strategy to prevent fault attacks.

CED schemes or conquer a data detection schemes are efficient fault tolerance strategy.

Parity  based schemes are useful for making AES-like cryptosystems resistant  against

fault attacks, and time redundancy countermeasures are vulnerable to DFIA.
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So,  we still  need to  kind of  figure out  what  to  do,  and the references  that  we have

followed here from for this part is shown here and.

Thank you for your attention.


