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So,  welcome  back.  So,  today  we  will  be  again  looking  back  into  our  Karatsuba

multiplier. So, I will continue with what we were discussing in the last class.

(Refer Slide Time: 00:25)

And  will  be  rather  trying  to  cover  these  topics  on  how to  implement  a  end-to-end

Karatsuba multiplier. We will be also discussing another important operation which is

called as a modulo operation. As we have seen in the last class that when we are doing

multiplications, then we are splitting right I mean then we are spilling about the field. So,

we need to again do a modulo operation, so that the result gets back into the field. So,

there are very efficient ways of doing that, but in particular when you are talking about

GF 2 arithmetic ok. 



(Refer Slide Time: 00:53)

So, this is a reminder of what we where we stopped in the last class. So, we want to

implement  233  bit  multiplication,  on  233  bit  high  bit  Karatsuba  multiplier.  So,  the

strategy is that I take 233, and I start decomposing them like 116 and 117. So, I take two

parts.

And then I can take 116, I can again decompose into say blocks of equal size of 58; and

58 117, I will again decompose at 58 and 59. And then I will do that gradually until I

have got dimensions which are lesser than my threshold. The moment my dimension

becomes  lesser  than  the  threshold,  I  switch  my  strategy,  I  apply  either  the  general

Karatsuba or if I may even apply my schoolbook algorithm. But the main point is that I

need to switch a bit the proper choice of the threshold. So, one should vary the threshold

and see for what kind of proper thresholding right for your platform you get an efficient

performance. 



(Refer Slide Time: 01:47)

So, if I  want to implement,  so I  will  take an example from verilog program I mean

verilog  hardware  description  language  or  h  d  l.  And  we  will  discuss  about  how to

implement the Karatsuba multiplier in hardware. So, therefore, what I say it is a it is a

(Refer Time: 02:03) block, so I have got two inputs or dimensions 233 bits, because a

and b are both GF 2 power of 33 elements. The final result is d which is again in the

field. So, therefore, the result is also in to 233, it is ok. 

Now, when I am doing a more normal multiplication with a and b, I know that my result

can go up to 465 bits ok, because when I am multiplying two numbers then essentially

can there can be an increase in the field size. So, therefore, in this case right when you

are talking GF 2 part of 233, their degree is maximum 232. So, likewise for both for a

and b. So, if I take a x and b x, and if I multiply them then my degree can go up to 232

into 2 which is 464.

So, therefore, right what I need to do is I need to do a modulo operation. On a modulo

operation with my you know like with a specific  primitive polynomial,  so the result

essentially gets back into the field. And I finally, get d which is again belonging to GF 2

power of 233 ok. So, how do I realize all these blocks? 



(Refer Slide Time: 03:01)

So, as I said that when you are taking a Karatsuba multiplier  and you would like to

implement a Karatsuba multiplier, so this multiplier operates on 233 bit inputs and gives

you a 465 bit output. And the multiplier uses sub multipliers with the operands as we

have described in this figure. The initial multiplier is of course, a simple Karatsuba base,

but however at threshold of I mean there has to be a specific threshold after which we are

switching right, this is the overall strategy. So, when you are so basically like when I let

us just first concentrate on the simple Karatsuba decomposition, when we have taken two

arguments of dimensions 233 bits. How do we decompose them into dimensions of 116,

117, and do the Karatsuba operation? 



(Refer Slide Time: 03:49)

So, there are some you know like something that, so this is the overall structure of the

operation. So, this is the code for doing the Karatsuba operation. And you see that I just

take two elements like 233 bits each and I want to apply the Karatsuba operation. So,

when I am doing a Karatsuba as I said right then I have got three multiplications that I

am doing ok. So, therefore, the three multiplications are denoted as ksm 1, ksm 2 and

also there is a ksm 3. So, these are the three instances of doing the Karatsuba operation.

So, as you see that the first thing that I have done is that I have split up into two parts.

So, one which has got from 0 to 116 which is one part; and the other one which is like

from 117 to 232 which is the second part. Likewise b is also split from 0 to 116 which is

one part; and b 117 to 232 with is the other part. So, we often say that this part is the

lower part, and this part is the higher part of a. Likewise this is the lower part of b, and

this is the higher part of b.

So,  when  I  am multiplying  these  two,  I  am getting  the  result  in  m 2.  When  I  am

multiplying these two, I am getting the result in m 1. So, when I want to do the other

Karatsuba multiplication, then I have to take you know like the higher part and the lower

part of a. And I have to do an XOR. So, therefore, I do an XOR of the lower part of a

with the higher part of a; likewise I do an XOR of the lower part of b and the higher part

of b. And then I essentially take the lower parts and the higher parts. And then finally, I



do a Karatsuba essentially you know like between the ahl and the bhl part. So, you can

observe here that I am essentially doing a multiplication between h plus al and bh plus bl.

So, therefore, you know like I am basically trying to multiply h plus l which is the higher

part plus the lower part of a plus bh plus bl which is the higher part plus lower part of b.

And I am getting the result finally, stored in m 3. So, now when we have done that, so

when we have basically you know like got the result, then I should get the result which is

a d, but d is now a 465 bit value. So, therefore, I of course, need to do a final modulo

operation.

(Refer Slide Time: 05:57)

So, now, let us see how we can do this operation, that means, how we can actually you

know like do this 233 do basically do the cards (Refer Time: 06:05) operation. So, let us

just focus on how we can combine the different components. So, for this right I mean we

can actually again you know like we sort to we can actually see how the operation is

done, and let us try to see how we can do this operation.
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So, so let me first just take you know like. So, this is your A H plus bl. So, let us write

just A H x plus A L. So, this is nothing, but A x. So, A x is my polynomial which has got

two parts A H and A L. Likewise right I have got B H x which I have written as sorry B x

which is written as B H x plus B L. So, this is my high part and this is my low part. And

when I  want to do A x into B x that means,  I  want to multiply A x with B x,  then

essentially write I mean we can observe that I need to multiply A H x plus A L with B H

x plus B L.

So, let us take an example. So, in our case A x is nothing but a 232 x power of 232 plus

so on till a 0. So, all these coefficients are 0 1 elements. Likewise I take B x which is b

232 x 232 plus so on till a 0. So, A x is therefore, equal to if I take a 0 plus so on till a

116 x part of 116 this is the lower part of a plus x power of 117 multiplied by a 117 plus

so on till a 232 x 115 ok.

So, essentially right I mean whenever when you are doing an operation between A x and

B x, so likewise right you can actually take B x and also write in this form which is b 0

till plus b 116 x 116 plus x power of 117 b 117 plus so on till b 232 x power of 115. So,

therefore, right what you can actually do is in a compact manner, you can write this A x

as A x equal to A L plus x power of 117 A H. And likewise you can write B x as B L plus

x power of 117 B H ok.



So, let me correct this and write that this would be something like, so this is just to imply

you know I do not take it as a multiplication with x, but this is just to indicate that I am

combining the higher part with the lower part, but the combination is done in this way.

So, therefore, right when we when we when we would like to multiply them, then you

can easily observe then how the how the multiplication works ok. So, therefore, let me

clear this, and just try to write the product ok.

(Refer Slide Time: 09:39)

So, this is easy. So, we can what we are basically doing is that the product is A L B L

plus x 117 A L B H plus A H B L plus x power of 234 A H B H ok. So, this is my final

result. So, now, what we have what now we can try to observe this in a figurative way it

is way figure ok.

So, here what we see is that this  is  my lower part.  So,  this  lower part  is  essentially

aligned with the right, that means, this is aligned with 0 for example. So, this is my A L,

B L. So, this starts in this case from 0 and continue still 232 bits. Likewise we see that

this part that is A L B H plus A H B L. So, this part that is A L B H plus H B L which we

have represented as A L plus A H into B H plus B L plus A L B L plus A H B H. So, this

decomposed into three parts. So, this actually starts from 117.

So, therefore, if I draw this line, there is a line at 117 from which these three parts are

essentially starting. So, essentially what I have got is three parts. And the three parts

essentially are nothing but A L B L ok; likewise A H B H A H plus A L and multiplied



with B H plus B L. So, this is my third part. So, this starts from 117 bit position and

essentially right if you start or if you say that this is 0, then this is also 232 because it is 0

to 232 ok.

And now one can observe that there is another part which essentially starts from 234 ok,

so that means, if I leave out some bits for that. So, essentially I start from here, and I get

this part which is nothing but A H B H. So, A H B H again starts from 234 bit position

and that you can observe here that is it is x to the power of 234. So, it starts here and

essentially continues and comes here or comes over here.

So, now, what we have to do is we have to combine these terms; you have to combine

these terms to get the final product. So, one you can one thing which you can easily

observe is that from 0 to 116, that means, essentially before 117 this is just nothing but

the copying of the A L B L. So, therefore, this part is very straightforward right I mean

you just need to copy from 0 to 116. And that is nothing but copying A L B L which is

nothing but essentially your you know like you have just copied the lower part actually.

However, if you just observe the 117 bit, essentially the 117 bit will have or rather from

117 to 232, you see it is the addition of three components. These three components are

being added up ok. So, that continues from 117, so this continues from 117 bit position to

232. So, we are basically adding up this m 1, m 2 and m 3 - three parts ok. The 233 bit

right is something which is interesting, because it comes in between you are still adding

up you are essentially so in this case when you are when you are doing this addition,

yeah you would have actually you have got four parts, this part, this and this and this. So,

we have got four parts which you are adding.

But for only one bit position, that means, the 233rd bit position you are only adding this,

this and this. So, there are three bits which you are adding ok, so that gives you the 233rd

bit. On the other hand right, for the remaining parts that is 234 till again the end of this,

we again for certain position you have got or sudden bit positions, you have got three

parts which you need to add; and for the remaining parts you just need to only add the

you just need to copy the A H B H values.

So,  this  is  the  summary  of  how  the  overall  computation  looks  like  understand  the

correspondence here. So, here you can observe that as I say that the remaining parts are I

mean the lower parts are just copying of one of the lower part which is m 2, we have just



copied it further. From this part to this part you are that is 117 to 232, you have got four

registers which you are XORing. For the 233rd third position, you have just three bits to

XOR.

Again when you are going for the 234 to 347, now, these 347, you can easily calculate by

the relative position. And these are here you have got again 1, 2 and 3 and 4 values to

XOR. And then finally, you have got the remaining 348, 349 which is an XOR of three

bit positions or three registers. And finally, you have got the higher part which you are

just  copying. So, this  gives you our mechanism of how you can combine the partial

results, and you can get the corresponding Karatsuba output.

(Refer Slide Time: 14:45)

So, now we can actually  go and we can describe the general  Karatsuba.  So, general

Karatsuba, as I said is where you decompose instead of decomposing into 2 as we have

seen in simple Karatsuba, you decompose it further. For example, if I take A x, I suppose

and suppose that decompose A x into a 2, a 1 and a 0 that is three parts. Likewise I take B

x and decompose into three parts. Then I can denote D 0 as a 0 b 0; D 1 as a 1 b 1; and D

2 as a 2 b 2. I can still write the final result A x and B x in terms of these coefficients ok.

So, you see that here I also define D 0, 1 as the Karatsuba of a 0 a 1 and b 0 b 1 just like

as  we  did  in  the  symbol  Karatsuba.  So,  this  is  easy  to  check  that  this  is  your

corresponding output result the interesting part is that when you have decompositions of



this form, then you have got each of these terms which has got three arguments or four

arguments ok.

So, now, if you observe or remember the old discussion that we had on the lookup table

structure for the FPGA, it already has got fixed inputs that means, if you are you not

using those four inputs for example, in a four input lookup table then you are basically

underutilization the lookup table. And that is why general Karatsuba seems to be better

utilizing the lookup tables because it always have got these number of input arguments

for each of these terms.

So, therefore,  you get a better  implication in the general Karatsuba, but as I say that

when you are doing or doing implementing a general Karatsuba, then it seems that the

gate count increases. So, therefore, for higher dimensions it is not a good choice, but for

lower dimensions it is a good choice.

(Refer Slide Time: 16:23)

So, therefore, what we can do is we can actually in the higher dimensions implement a

normal simple Karatsuba, but when we switch back or when you go down to the lower

field sizes, then we can switch to the general Karatsuba. So, therefore, what we do is you

can actually do this and when you are going back going for the smaller degree like 14

and 15, you can actually switch to the general Karatsuba. So, here is a link which you

can follow where you can get a complete synthesizable very low code for this design

which you can where you can do further experimentation. 
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There is another important structure which we also need to implement and that is called

as a modulo arithmetic because you see that as we have said all are discussed already

right  that  our  field  sizes  have  increased.  And therefore,  right  we need to  do a  final

reduction operation where we bring that the result into the find into the original field.

So, here is a very simple way of how we can do that. So, I will again take the example of

my Karatsuba operation. So, I have got the final result from 0 to 464. And I want to bring

the result back from 0 to 2 to 0 to 232. So, therefore, right my units I have to look into

my in irreducible  polynomial.  So,  in this  case the irreducible  polynomial  is  x to the

power 233 plus x to the power of 74 plus 1. Note that 74 is in general lesser than n by 2.

So, now, what we do is that if I want to do this reduction, then a very common way of

doing that is we replace x to the power of 233 by x to the power of 74 plus 1, so that

means, right if I represent this x as alpha then alpha to the power of m becomes alpha to

the power of n plus 1. So, therefore, right if you have got any element which is more than

232, that means, it is 233 for example, I can replace it by 1 plus alpha to the power of n

ok. And likewise for all the elements which are more than that. So, therefore, right what I

can do is that I will reduce it. And if I reduce it right then I will see that so these are

corresponding reduced elements. So, these are all elements which are or positions which

are outside my field and therefore, it goes from alpha to the power of m to alpha to the

power 2 m minus 2 ok.



So, you can plug in for example, m equal to 233, and you note that two into 233 minus 2

is 464 that means, the maximum position here maximum value here. So, all of them are

being reduced by the field, and you can see reduced by the irreducible polynomial. And

you can observe that these terms like one alpha till alpha to the power of m minus 2 are

now all inside the field ok. For example, m is 233; so therefore, m minus 2 will stand to

231 ok.

So, therefore, right you see that it becomes. So, you can see that is there is more gap here

in this diagram to indicate that it is 231. So, therefore, right this is the corresponding part

which is being shown by this white rectangle ok. So, I will reduced it. And therefore, this

is my corresponding reduced result.

On the other end there is another component which is alpha to the power of n till alpha to

the power of m plus n minus 2 which if you consider right, here it starts from alpha to the

power of n, so n is 74. So, it starts here at 74 and continuous beyond. So, till a point and

right that is it reaches to 232, it is fine, because it is inside the field. But beyond that

again, it exceeds the field. So, you have to again reduce it. So, how do you reduce it

again you take this elements and do a similar operation and then you reduce it. So, again

you basically bring it here, and then you this is the part in this case right with just one

reduction, it gets into the field and therefore, the final result is in the field ok.

So, you can observe that when you are doing this reduction right, and the final when

finally, when you are giving the result, then the computations which you are doing are

just employing by a Boolean XORs ok. So, therefore, the entire reduction operation can

be done without any complicated division or finding out the demanded ok. You can just

do it  simply  by using  Boolean XORs.  And therefore,  the  reduction  operation  or  the

modulo operation in GF 2 power of n arithmetic is very efficient ok. You can do it very

in a very simple in a very simple manner.
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So, likewise right I mean you can find out more details in this book ok. So, this is like I

mean  this  is  just  an  overview  about  how  you  can  implement  the  two  fundamental

structures like the Karatsuba multiplier both the simple and the general Karatsuba and

also right how you can do the modular arithmetic ok. So, with this right you should be

able to follow more discussions which are given in the book which essentially  I  am

omitting for the sake of time.

(Refer Slide Time: 20:23)



And finally, right just to conclude what we discussed in both the previous lecture and this

part is that finite field theory is very central to cryptographic algorithms. Understanding

finite  fields its crucial  to develop efficient  architectures  for cryptographic algorithms.

Binary fields offer special advantages in terms of efficient designs it is more compact,

more  optimal  in  terms  of  its  representation.  We studied  few  important  finite  field

operations like in characteristic 2 in specifically I mean like the Karatsuba multiplication,

the squaring operations and also the modulo arithmetic ok.

So, thank you. So, we will continue again in the next class with more discussions on

finite field architectures and other subsequent topics.

Thank you.


