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So, welcome back to this class on Hardware Security. So, we shall be continuing our

discussion on differential fault attacks on AES. 

(Refer Slide Time: 00:25)

So, in particular we shall be trying to look into how to perform DFA attack on AES with

one single faults. So, in the last class we saw that we 2 faults try 2 single byte faults, two

we were you know like able to reduce the AES key size to a unique value. But now

suppose you know like and we have seen that if there is one single fault, then you reduce

the AES key size to 2 power of 32 values. So, the question is now that we will try to take

up is that with one single fault can you reduce it further. 

And in particular like we will see that in there is we can develop an algorithm through

which you can do that, but it can reduce the key size to only 2 power of 8 values, but if

you do that then you need a time complexity of 2 power 32. And then we will see a

further improvement in which you can reduce that time complexity to 2 power of 30

values;  that  means,  average on average like 4 times faster ok.  That  means,  if  in  the



previous case you were requiring like 60 minutes to do the attack in this case you would

require around 15 minutes to do the attack it is significantly faster. 

(Refer Slide Time: 01:20)

So, the question is that can the attack work, that we have seen with one single faulty

Ciphertext we have seen already that this is a summary and even then right 2 power 2 32

probably a brute force search is still possible, but we would try to reduce it further. 

(Refer Slide Time: 01:35)

So, here is again in like some comparisons of existing fault attacks for example, there

was a old work by Blomer which requires around 128 faults and then there was like 2



works from Giraud which requires around 50 and 250 faults. So, the whole pursuit right

has been like again there was a paper by Dusart to which requires around 40 faults and

then my period which requires around 2 faults and then right there was an attack, that we

reduced the time complexity to 2 power of 32 values, but still requires around 2 faults

ok. So, therefore, the pursue has been to reduce the number of faults and we would like

to continue this trend and reduce it further. 

(Refer Slide Time: 02:09)

So, here are some more attacks that were tried by some other groups and what we are

still trying to reduce it is we are still trying to optimize the fault attack. 



(Refer Slide Time: 02:20)

So, therefore, right I mean this is the current status right now there where you see that the

AES key size can be reduced on to power of 32 to power of 8 values only for a single

byte fault. And this essentially makes that are very practical because; that means, right

you  just  need  one  single  shot  to  reduce  the  key size  to  only  256  guesses  which  is

essentially  very  easy. And so,  these  are  the  two references  that  I  will  be  using  and

elaborating in this work. 

(Refer Slide Time: 02:44)



So, what are the drawbacks of the existing DFA? So, basically requires a brute force

search of 2 power of 32 values and it has got a time complexity of 2 power of 32. So,

you would like reduce this space complexity if I say that the brute force search of 2

power 32, we would also write we try to reduce a time complexity further. 

(Refer Slide Time: 03:03)

So, therefore, right we will try to improve both on the search complexity as well as the

time complexity of the attack. 

(Refer Slide Time: 03:10)



So, how can we reduce the search space of attack? In the first phase we have seen that

we require we have basically you know like we find the 2 power 32 candidates of the

10th round key, but in the second case second phase we shall reduce 4 further differential

equations which we had neglected in the previous attack ok. So, you remember right that

state the propagation there was like in the 9th round, there was also like certain equations

among  the  faults  which  we  did  not  write  we  did  not  exploit  in  the  attack  we  just

considered about the final equation sets which we explore it in the attack. 

So, therefore, right they also had relationships like 2 f dash f dash f dash and 3 f dash

only right if you want to go and exploit those differentials, then you have to work behind

the 9th round and go there; that means, you have to work behind the 9th round key. So,

therefore, right you have to understand the relationship between the 9th round key and

the 10th round and that can be slightly complicated. And then finally, right you would

like to reduce the 2 power of 32 candidates right.

Once you have these equations further to 2 power of 8 values ok. Remember that if you

can do this, then this filter also will have a probability of 2 power of minus 24 ok; that

means, these 2 power of 32 candidates will get charmed will get filtered and get reduced

to 2 power of 8 values because it is like 2 power 32 multiplied with another factor of 2

power of minus 24 which will give on average around to power of 8 values ok.

(Refer Slide Time: 04:35)



So,  therefore,  right  in  order  to  understand  that,  we  have  to  basically  look  into  the

equations. So, therefore, here you know like we have been exploiting these equations and

therefore, we have reduced 2 power of 128 key size to 2 power of 32 values, what we

now want is we want to work behind and go to these positions ok. We want by exploit

the relationships here among these key watts and reduce them further. So, in order to do

that let us try to you know like derive or you know we just redraw this picture and try to

see how the equations work. 

(Refer Slide Time: 05:08)

So, in particular right what I am trying to say is that, imagine that you have this is the

fault that you had already you know like induced and remember that this fault essentially

suppose has a value of p. So, I do not really bother about what is the value of the fault,

the fault can take any random value and then you have the Mix Columns. So, let me

write this as the mix columns just ok. So, mix columns and then because of the mix

columns you have the differential essentially as follows. So, therefore, let us just write

the differentials here. So, differentials are 2 p p p and 3 p.  And then you have the XOR

of the 9th round key. So, this is your k 9 which comes into play and then you have got

the sub byte. 

So, I am just writing them as SB and shift row. Remember the 9th row 9th column 9th

round has shift rows ok. So, you have the shift rows here and then you have because of

that right these particular bytes, get spread out because of the shift row. So, therefore,



how does it get spread out? We know that the shift rows does you know like the left shift

for example, in the first row there is no shift in the second row this gets shifted like this,

then it gets shifted here and then this gets shifted here. So, you have got the values like p

1 p 2 and this value is you know like suppose or maybe just write it as p 0 and then I

write it as pone this is p 2 and this is p 3 ok.

So, these are the 4 bytes that you have or 4 differential bytes that we have and then you

follow this up by a mix columns because of the mix columns we have seen that you get

those nice relationships that we have just previously seen. So, I am just not elaborating

them, but just the fact that after this you have got again you know like you have got

again you know like ok. So, here this was actually the 8th round key because this is in

the 8th round.

So, this is this fault has been induced at the input of the 8th round and then what you do

is, you because of here you get these relationships and then you XOR this with the 9th

round key which is a k 9 and after this you have got again a layer of 2 operations which

is the sub bytes and the shift rows and finally, you do an XORed with the 10th round key

which is k 10 to give your corresponding cipher. So, this is your cipher text. So, let us

denote it as C 10 this is how your differential works. 

So, now, if you observe that we basically have been have exploited, you know we have

targeted these differentials  this has already been targeted and therefore,  you have got

reduction now we want to target these differentials. So, the question is how do I exploit

these differentials? So, in order to work out that right we will basically right we see that

we  if  you  want  to  work  out  that,  then  we  basically  need  to  work  behind  ok.  So,

remember that in this particular step right I mean when you are working behind, you

have basically exploited these differentials here, but you work behind and you want to go

to these values p 0 p 1 p 2 p 3 ok.

For this you have to work behind this mix column. So, there is a mix column we just

taken place here so; that means, if you want to work behind the mix column, you have to

con you have to see then inverse mix column matrix ok. So, what is the inverse mix

column matrix? So, the inverse mix column matrix is shown here as 14 11 13 and 9. So,

you just can go back and check. So, it is 14 11 13 and 9 is a circular shifts 14 11 13 and 9

and likewise 14 11 13 and 9. So, this is your inverse mix column matrix ok.



So, now, you observe that if I want to you know like get this particular differential, if I

want to get these position or these differential then I have to you know like take this row

of the mixed converse mixed column matrix and I have to multiply with this differential

here or these this column here ok. So, therefore, right we just write down the columns in

this way. So, let us, so, this is your the output of the you know like this is the point where

you are getting the output of the 9th round cipher ok.

So, the 9th round cipher you can write as so, let us just write it down C 0001 02 C 03

then you have got C 10 C 11 C 12 C 13 C 20 C 21 C 22 C 23 C 30 C 31 C 32 and C 33

this is your 9th round cipher. So, if  you want to come to this  location right you are

basically  multiplying  this  with this  column ok. So, you are multiplying  for  both the

correct  value  and  for  the  faulty  ciphertext  faulty  operation  and  then  you are  taking

XORed to get the value of this p 0 differential ok. Likewise right if you want for this p 1

you have to multiply you know like suitably this row with this column ok. So, likewise

right you have to basically kind of multiply for the respective columns. 

So, therefore, right I mean. So, therefore, right if you want to do that, then you need to

you know like and if you do that right then you these are the equations that you get and

let us you know like quickly write down those equations. So, in particular right I mean

you will get the equations as say. So, let me just first of all. So, with this right we can

work out these equations and so, the equations right which you will get is say 2 p. So,

because you know like these 2 p this p p these p and this is 3 p, but you get that when

you work behind ok.

So, remember when you get to this differential, after that you can work behind because

you know like you have to just you know like already right I have taken care of the shift

rows, but when you are working behind you have to work behind the a inverse S box

because there is an S box here ok. So, you work behind this and that is denoted as S

inverse and the k does not create a problem because it is a differential.

So, therefore, if I take the differential then the effect of k it gets cancelled out ok. So, the

kth round does not create a problem. So, therefore, right if you work behind then you get

S inverse and since you are you know like working behind and I am saying that you have

to take the effect of these 14 11 13 and 9. So, you can write this pretty much as 14

multiplied with C 009 XORed with k 009.



So, again remember that when I am writing k 009 means I am considering the 9th round

key and the 9th round key of the 9th round key is essentially nothing, but k 00 k 01 k 02

k 0 3 and exactly in the same way k 1 0 k 1 1 k 12 k 13 k 20 k 21 k 22 k 23 k 30 k 31 k

32 and k 33 this is your 9th round key ok. And this essentially right we will see how this

line down propagates to become the 10th round key ok, but right now I am assuming that

I  am just  considering the 9th down cipher and the corresponding 9th round key and

therefore, I can XOR them and come to this position. So, therefore, right I just take and I

take 14 11 and I apply on this. So, therefore, these like if you just continue like this. So,

you get 11 C 109 and that is XORed with k 10 9 and that is XORed with 13 C 20 9

XORed with k 20 9 XORed with 9 times C 30 9 XORed with k 30 9. 

So, here you see that we have considered C 00 C 10 C 20 and C 30. So, its pretty much

you know like this column we have multiplied with this row all the inverse mix color

matrix and this is for the correct operation right this is all for these are all for the correct

operation if I want to get the differential, then I have to XOR this with the faulty case ok.

And in the faulty case essentially can be denoted as exactly same the only thing that we

will do is we will write C 00 star 9 to indicate that this is the faulty cipher ok. So, you get

k 00 9 XORed with 11 multiplied with C 10 9, but again there is a star XORed with k 10

9 XORed with sorry XORed with 13 C2 0 star 9 XORed with k 20 9 XORed with 9

times C 30 9 XORed with k 30 9 ok.

So, this is your you know at this point you have come to 2 p. So, you have come to

basically you have got this differential and there from this differential you. So, basically

you have to come this location taking the S inverse and you have to you have got this

differential now you have come to 2 p here. But remember all these key equations have

now involved with k 009 and these are the 9th round key which I have to kind of express

using the 10th round key. 

So, for this right we will just take a look into how the key shielding works and if you see

the key scheduling, the key scheduling of AES is very simple. So, what you do is you

just consider them column by column for example, I consider this column and I consider

this column and then I basically I know I do an operation on this column. So, this column

is essentially you know like rotate the operation which is called as a road toward and

then that is followed by an S box operation. 



So that means, what happens is this k 13 goes at the top this k 13 comes at the top then

we have got k 23 then we have got k 33 and then this k 0 3 comes in and then we apply

an S box operation on them. So, this is essentially called often a sub word and then there

is a round constant. So, in this case the round constant you say the 10th round constant

you say denoted as h 10 and you get the final you know you get this particular operation

ok. So, this is your you know like this is your first round of the 10th round key. 

And then you basically you know like what you do is once you have got that you XORed

this with the first round. So, you basically the first column. So, you basically XOR this

with k 00 and you XORed this with the second value we XORed with k 10 then you

XORed this with k 20 and then you XORed this with k 30 and that gives you the first

column of your 10th round key ok. 

So, this is your first column of 10th round key, for the second column what do you do is

you know like again you take this column and now. So, you basically take this column

and you XORed it with you know like the with something 4 round 4 steps behind and.

So, XORed it with this column and then you get this column ok. And then for the third

column of the 10th round key you basically XORed with the previous column with this

column and once the final column you basically XORed it with this column you XORed

the last column of the 9th round key.

So  that  means,  if  you  now  want  suppose  I  give  you  the  10th  round  key,  because

remember  that  you have reduced the key size of a key space AES to some possible

values. So, suppose you know the 10th round key. So, if you want to express the 9th

round key; that means, you have to just take an XORed of these 2 successive columns.

So, if you take an XORed of these 2 successive columns you get this color ok.

Likewise, if you take an XOR or exclusively or these 2 columns I mean you take an

XORed of these 2 columns you get the previous column. If you take an XORed of these

2 columns you can get this column. So, you basically can express that 3 columns of 9th

round key just by XORing successive columns of the 10th round key. Only for the final

like  that  the  first  column  of  the  9th  round  key  you  have  to  just  do  a  little  bit  of

management into see that there is a cyclic rotation that we have done ok. And that for

that you have to see you know like the values of k 13 k 23 and k 33 and k 03 of the 9

round key.



But remember that you know like k 13 k 23 and k 33 and k 03 are something that you

know like you have already observed you have already you know like got in the you

know you have already obtained them, you have basically already obtained them and

express them using the 10th round key.

 (Refer Slide Time: 18:43)

So, therefore, you summarized this entire story then you know like you can write the you

know like corresponding 9th round the 9th round key in this way. So, you can write this

as k 00 10 XORed with S times k 13 0 10 XORed with k 12 10 XOR with h 10 and then

the second one is k 10 XORed with S times k 23 10 XORed with k 22 10, k 20 10

XORed with S times as k 33 10 XORed with k 32 10 and then you have got k 30 10

XORed with S times k 03 10 XORed with k 02 10. 

So,  this  is  the  first  column of  the  9th  round key, but  for  the  others  right  it  is  very

straightforward because we just do this k 01 XORed k 0 1 10 XORed with k 00 10 just

specifically XORing the successive columns k 11 10 XORed with k 1 0 10 and then k 21

10 XORed with a k 20 10 k 31 10 XORed with k 30 10 and then k 02 10 XORed with k

01 10 then k 12 10 XORed with k 11 10 XORed with k 21 10 and then k 32 10 XORed

ed with 31 10 and then the final column is again in a similar fashion k 03 10 XORed with

k 02 10 and then you have got for the second row (Refer Time: 20:53) we are just doing

is k 13 10 XORed with k 12 10 and then k 23 10 XORed with k 22 10 and then you have

got k 33 10 XORed with k 32 10. 



So, this is your final 9th round key expressed using the 10th round key bytes. So, now,

let us you know just write I just write one equation similarly you can derive or we can

write the other equations. For example, we have already seen that 2 p 0 or you know like

we have seen that 2 p rather let us write 2 p is equal to S inverse of. So, you know like if

we just go back for example and just see the previous thing. So, in the previous case right

we have already expressed 2 p. 

But now what I will do means I will you know like express the C 09 in terms of the final

round cipher and I will also express the k 09 in terms of the final round key that is the 10

round key ok. So, I will kind of write both of these things in and similarly for the other

terms also and complete this equation. So, if you do this right then let us see how we can

do that. So, therefore, right you will basically get this that is S inverse of remember like

we are 14 multiplied with S inverse of k 00 10 because this is the final round key XORed

with C 00 XORed with the 9th round key ok. So, the 9th round key as you can see is here

ok. So, is written here as is written here or expressed using the 10th round values.

So, if we just plug in over there you get k 00 10 XORed with S times k 13 10 XORed

with k 12 10 and XORed with h 10 ok. So, that gives you essentially this part and then

again similarly right you have got 11 and 11 multiplied with S inverse of k 13 10 XORed

with C 13 XORed with the corresponding 9 down value which is nothing, but k 10 9th

round key expressed in 10th round expressed using 10th round key is S time. So, this is

essentially  this  key that  is  S multiplied with k 23 10 XORed with k 22 10 and this

XORed with similarly  write  with 13 times S inverse of  k 22 10 XORed with C 22

XORed with k 20 10 XORed with S times k 33 10 XORed with k 32 10. 

And that is nothing, but you can see here is essentially this part of the key XORed with

the 14 11 13 and then finally, now 9. So, you have got S inverse of k 31 10 XORed with

C 31 XORed with k 30 10 again this is this part of the key k 3 is k 3 0 10 XORed with S

of k 03 10 XORed with k 0 2 10. And so, therefore, right I mean this is essentially you

know like one part and you have to essentially do the same stuff with you know like I am

not writing this part, but only that this part is for the faulty ciphers. So, therefore, you

have to just replace these equations with the star variants of them. So, therefore, right we

will if you just. So, therefore, this shows that you can express 2 p in terms of the 9th out

ok. 



So, you can continue this in a similar fashion basically as we have seen the dependencies

like we have seen like how to write one of the equations to get to the point of to p 0. 

(Refer Slide Time: 25:22)

So, we can basically continue in this way and basically just rather you can elaborate the

equations in a similar fashion, but what is important to notice the number of key bits

which essentially are responsible for calculating the values of these differentials 2 p 0 p 0

p 0 and 3 p 0. 

So, therefore, right I will just write for the remaining 3 bytes what are the key bytes

which are involved. For example, for p 0 we have got k 03 10 k 02 10 k 13 10 and k 12

10 and k 21 10 k 23 10 k 22 10. So, you have got k 03 k 02 k 13 k 12 k 21 k 23 and k 22

followed by k 30 10 k 33 10 and k 32 10. So, like this  right you for the other p 0

differential you will have k 02 10 k 01 10 k 11 10 k 12 10 k 11 10 k 20 10 k 22 10 k 21

10 and then k 33 10 and k 32 10 followed by k 31 10 ok. Again for the remaining

differential which is 3 p 0 you have got the 3 p 0 depending on k 01 10 k 00 10, k 10 10

k 11 10 k 10 10 has already been taken care of. So, you have got k 23 10 k 21 10 k 20 10

and then finally, k 32 10 and k 31 10 you also have k 30 10. 

So, now if you observe the interestingly. So, one possibility is that you know that there

are 4 equations ok, so, 4 differential  equations.  So, we have already seen one of the

differentials in the previous for example, this was one of the differentials. So, therefore,

right if I just randomly you know like take my keys and I substitute them then I get a



value of 2 p. So, I can take them and I can you know like pretty much reduce it by the

other 3 equations and therefore, right I mean if I do that then there will be like to power

of 32 like for every 2 power 32 keys I have to kind of substitute in these equations I have

to solve them ok.

So, I can do slightly better by observing an important property of the key schedule here;

that means, if you observe the number of key bytes which are responsible for example, if

I just quickly write down this k 0001 k 02 k 0 3 k 10 k 11 k 12 k 13 k 20 k 21 k 22 k 23

and k 30 and k 31 k 32 and k 3. So, this is your 10th round suppose key bytes you will

see that these 2 equations there is no key byte which actually depends upon these 2 key

bytes it does not depend upon k 00 and it does not depend upon k 10. 

So, that implies that you can actually do an interesting you know like you can utilize this

in an interesting  manner  and you know like  that  can be you know like  exploited  to

reduce the time complexity of the attack. So, with this background let us just you know

like get back and see that how you can reduce the we have already reduced from 2 power

of 128 to 2 power of 32.

(Refer Slide Time: 29:23)

So, now what you can you can use the equation that we are just now seen and you know

like there are a for further differential equations and therefore, right you know that for 4

those for the differential equations which you can summarize in this format. So, this is

the compact way of writing them. You know that the probability of a random key to



satisfy this is minus 2 power of minus 24 and you have got to power of 32 keys from the

first phase. So, in average you will be 2 power of 8 keys will survive. 

But now if you take all the 2 power of 32 keys and if you plug into them then your time

complexity is still 2 power of 32. So, that what, so, now, we will exploit the just now the

fact that we have seen and reduce you know like the time complicity of the attack. So,

therefore, if you do this right then definitely you can reduce the key size, but how can we

improve the upon the time complexity. 

(Refer Slide Time: 30:14)

So, therefore, right what we do now is we observe as well. So, this is essentially which

we can trivially observe here is that you can reduce the key size to 2 power of 8 values,

but the time complexity is 2 power of 32. 



(Refer Slide Time: 30:26)

So, what you can now do is based upon the previous observation that it does not depend

upon 2 key bytes. So, this is another you know like naming convention that we have. So,

there are different the way I you know like short the key bytes essentially was by the

rows and the columns. So, typically another way of you know like or another naming

convention is in this way like k 0 k 1 k 2 k 3 k 4 k 5 k 6 k7 k 8 k 9 k 10 k 11 and so on

till k 15 ok.

So, this is essentially in a you know like you are basically doing the across the columns

ok. So, here we have seen that in you know equations 2 and 3 does not depend upon

these 2 key bytes remember this was my k 00 and k 10 in the previous nomenclature that

is it does not depend upon k 0 and k 1. So, therefore, what you can do is, you can do this

attack in a nicely you know in a divide and conquer manner.



(Refer Slide Time: 31:27)

So, what you can do is elaborated here for example, what you can do now is you can try

to accelerate this process by breaking up. So, this is you know the initial key quartets for

example, you know like suppose this is your first and fourth key quartet. So, remember

that you know like you have got a 1 b 1 C 1 d 1 these are all your key your key quartets

and each of them have got size 2 power of 8 ok. Because you have got for every key

quarter there are 2 power of 8 values; 2 power of 8, 2 power of 8, 2 power of 8, 2 power

of 8 that was that is how we got 2 power of 32. 

But now what you can do is that one of these key quartets you can actually break it up

into 2 parts ok. So, one part is shown here as you know like L 1 and the other part is L 2

ok. So, note that there are some interesting observations here if you see the you know the

contents of this table we have written you know like a 1 b 1 c 1 d 1, a 2 b 1 c 1 d 1; that

means,  the  way the  key quartets  will  occur  ok.  So,  you will  find  that  you will  get

solutions like a 1. So, suppose you know like yeah for 3 key bytes if you get b 1 c 1 d 1

you will find that there are 2 values of a 1 a 2 which will be along with this ok.

So, I am not explaining why this happens, but I would rather leave it to an exercise with

a small hint that is you know like the form of these equations is of this form right S

inverse of x is equal to S inverse of XOR alpha is equal to of beta. So, therefore, if I fix

alpha and beta  and suppose you know like you get a solution at  x equal to x 1 this

implies that you also have another solution at x equal to x 1 XOR of alpha. 



So, therefore, there are 2 solutions for every beta that you get and that is why you get the

solutions in paired. So, therefore, now is that is why you can split this into 2 parts and

you can essentially you know like you can write those 2 key value those 2 values of k 0

for example and write a 1 a 2 and in the other table right you have got the remaining

values like b 1 c 1 and d 1 ok.

So, likewise you can split up this key quartet also into 2 parts L3 and L 4. So, now, what

you can do is remember that we know that equation 2 and 3 does not depend upon k 0

and k 1. So, you can kind of leave that and the other part of the key right I mean other

part of the key quartet that is L 2 the size of these right is 2 power of 7 because totally it

was 2 power of 8 which we have broken up into 2 parts. So, here there are 2 power 2

values and here there are remaining 2 2 power of 7 values. 

So,  therefore,  the maximum size of this  list  L 2 becomes 2 power of 7 likewise the

maximum size of you know like the of this list L 4 is also 2 power of 7. So, therefore,

what I do is I take 2 these 2 power of 7 these 2 power of 7 and for the other key quartets.

So, in the second in the third key quartets where there are 2 power of 8 and 2 power of 8

values. So, totally if I multiply I get you know 7 plus 7 14 plus 16 and I take them and I

reduce them by test 1 which is my equation 2 and 3 ok.

And then right I bring this k 0 and k 1 and I reduce them by test 2 remember in test 2, I

can actually paralyze this process. So, you can basically pretty much parallel do them do

these tests in parallel and you know like you can further reduce it.



(Refer Slide Time: 34:47)

So, basically right what I am trying to say here is summarized also in the you know like

in the next discussion here, for example, what you can observe here is that L1 contains k

0, L 2 contains k, L 3 k, 1 0 and k 7 there is a remaining 3 bytes L 3 contains k 1 L 4

contains k 4 k L4 and k L1. So, the second and a third key quartets are represented by 2

lists L 5 and L 6 each of dimension to power of 8 

(Refer Slide Time: 35:05)

So, therefore, now if you look at equation 2 and 3 you have got these lists and therefore,

the total dimension is 2 power of 30 and therefore, if we now use equations 2 and 3 then



you can reduce it to 2 power 22 candidates ok. Now these 2 power 22 candidates you

combine with the other 4 values of k 0 and k 1. So, therefore, there are size of these right

will increase to 2 power of 22 multiplied with 2 power of 2 that is 2 power of 24. 

And then you use equations 1 and 4 to reduce these 2 power of 24 to the final 2 power of

8 values. So, remember if you do in this way then your size never exceeds 2 power of 30

your size right is always 2 power of 30 and therefore, the time complexity of the attack

does not shoot beyond 2 power of 30. So, there is an improvement over the previous 2

over the previous attack where the time complexity was 2 power of 32. 

(Refer Slide Time: 35:56)

So, therefore, right you have basically been able to do the attack in a technique which is

4 times faster. 



(Refer Slide Time: 36:01)

So, to summarize DFA on AES can be done with a single fault, a single byte fault or the

input  of  AES 128 can  reduce  the  key size  to  only  around  256 guesses.  And in  the

optimized version one can do the attack with the time complexity of 2 power of 30 which

is like a 4 times improvement over straight forward approach using the property of the

AES key schedule. 

(Refer Slide Time: 36:27)

So, here are some references that we have used in the discussion and of course, like you

can refer to the original textbook for more details. So, with this I would like to say.



Thank you.


