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So, welcome back to this class on Hardware Security.

(Refer Slide Time: 00:21)

So, we shall be continuing our discussions on threshold implementation. So, as we have

seen in the last class the idea of threshold implementations and where it is required to

improve upon a basic masking scheme which was in secured against glitches.  So, in

today’s class  we shall  be  defining  upon on  the  properties  of  TI  and  also  see  some

potential constructions and some case studies based on that.



(Refer Slide Time: 00:40)

So, as we have defined in the last class right this is essentially the basic idea of threshold

implementations where we are basically the idea is that if the input X and it has been

broken up into shares then the threshold circuit right should be essentially give me the

corresponding output shared. So, that if I combine them I should get a legitimate output

which is corresponding to the actual data input X.

(Refer Slide Time: 01:02)



So, therefore,  right  as I  said that  there are certain  important  criteria  which threshold

implementations should satisfy, and one of the most fundamental properties is what is

called as uniformity of masking.

So, let us define and see what it is it stands for. So, the idea is that for all values with

probability of X equal to small x which is greater than equal to 0; that means, for all

legitimate values of the input x, suppose I define Sh x to be the you know like the set

which essentially represents the valid shared vectors and the valid shared vectors will

represent by the vector x, by this symbol for x.

So, that means, right the shared x will essentially consist of those shares remember that

we had taken the input x. So, therefore, our representation was that we have taken x right

we had taken x sorry we have taken x and broken up that or written up that as S x shares,

ok. Each x right is an n-bit value. So, therefore, it is also an n-bit value. So, every share

is  also  an  n-bit  value.  So,  therefore,  the  total  side  of  this  is  n  into  S  x,  and  what

essentially it means that Sh x should consist of those vectors. So, this essentially this

combination this tuple is denoted as this vector X for example, or written as in this way

in my slides; that means, that if I take or if I XOR these components then I get back the

original data which is x,.

So, now we will basically try to see the conditional probability of probability of X equal

to x; that means the vector. So, this is again the random variable which is essentially

denoting this particular value say you know like x or vector x. So, the probability that the

shared values  right  for the mask or  the  shared vector  essentially  takes  place  takes  a

specific vectorial value, essentially shown over here given the input is x, given the input

is x, I am trying to find out the probability that the sharing is a specific value, ok.

That means, like for example, suppose you know like that x is equal to 0, I am trying to

find out the probability that my sharing, or my sharing right is essentially suppose 000

given that the input is x equal to 0, ok. Note that right if the x is equal to 0, it may also

happen that the sharing right is equal to X equal to say 011 this is also a valid sharing of

x equal to 0 because if I take an XOR 0 1 and 1, I get 0. So, therefore, right these are all

my individual probabilities that I would like to calculate and what it turns out as that. So,

therefore, I can you know like so, therefore, this conditional probability stands or denotes



a probability that X is some vectorial x when the in unshared input is x, taken over all the

auxiliary inputs of the masking.

So, now the definition of uniform masking or masking X is said to be uniform if and

only if there exists a constant P such that for all x; that means, for all these values of x;

that means, for all values of x we have if this is a valid sharing, then this probability is a

constant, or if this is not a valid sharing then this is condition probability is 0. As you can

see right that if I ask you right, what is the probability that X equal to 0 1 0 given that

input x is 0? Now, this is not a valid sharing, right. So, therefore, it is trivial to know that

this  probability  should  be  0,  right  because  this  is  not  a  valid  sharing.  But,  what  is

important also to note that for all valid sharing this probability is a constant which is p,

and the therefore, right it is important to understand why is this definition.

So, implication of this definition is actually following from secret sharing schemes, or

essentially, but what it tries to say is that the uniformity of masking would imply the

independence of the combination of any S x minus 1 shares,; that means, right it will

indicate that the value x is independent of any S x minus 1 shares; that means, right it

will indicate that the value x is independent of any S x minus 1 shares ok; that means,

right even if I give you S x minus 1 shares you will not get any information about the

value of x if this particular property is maintained.

So, therefore, right this is an important result it is a very important result and therefore,

right it is important to know or understand why this works.
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So, in order to know that we have to basically get into the proof of this result, so, now we

will basically use a particular notation where for example, this vectorial X i is basically

representing a random variable or denoting a random variable which is denoting the i-th

shared for  example,  and if  I  write  X at  i  bar  then;  that  means,  right  I  am basically

considering the fact that this particular or basically the vector without the i-th share.

So, therefore, what we are trying to prove is that if the masking is uniform; that means, if

the previous definition is maintained,  then this  implies that actual  data  which is  x is

independent  of  this  part  which  is  essentially  x i  hat  which  means  that  the  basically

represents a vector without the i-th share; that means, you know S x minus 1 shares. So,

for that right let us see this conditional probability this essentially used or define in my

definition of uniform masking.

So, this conditional probability says that probability of X equal to x hat which is the

vectorial X given that the actual unmasked data is say small x. So, now we can basically

pretty much write this share into two parts; one part is denoting by x x x vectorial i, this

is the i-th share and the part without the i-th share, because the share will have two parts

conditioned on X equal to small x.

So, this you can actually apply the just get the definition here and you can write this as in

the denominator it will be have probability of X equal to small x. In the numerator it is a

joint probability of x i of these two parts will remain along with X equal to small x, ok.



So, that is essentially written over here as comma X equal to small x, ok. So, this is

nothing, but just applying the fact that probability of probability of A given B is equal to

in the denominator I have got probability of B in the numerator I have got probability of

A comma B.

So, if we just apply this definition here and A is essentially given by these two parts and

B is essentially just this part then you can write this ok, so, trivially. So, now, you can

observe that with this particular now you can basically bring in. So, now, we bring in two

parts, ok. So, one is essentially of X equal to small x, X i hat equal to x i hat in the

numerator and the denominator. So, they basically cancel up, ok.

And, observe that this part is nothing, but you know like they as shown over here as the

conditional probability of X i hat equal to x i hat, given X equal to small x, ok. So, this is

essentially this part and this part is essentially you know is the probability of X i equal to

x i. So, I basically just bring in this part and in the denominator I basically condition in

on this part that is X equal to small x, X i hat equal to x i hat.

Now, what is this part? So, you can observe that if x is a valid sharing; that means, you

know like if this vector x is a valid sharing of x then this condition probability is 1,

because if I give you the one of the inputs and if I give you the vector other than the i-th

share then this particular thing is only one result right you basically know what is that

value because you can suppose you consider the XOR for example,  then this  part  is

nothing, but the XOR of this part and these parts, and therefore, write this probability is

equal to 1 in that case, ok. So, this will work out to 1.

On the other hand right if you find that this is an invalid share then that would imply that

this is 0. So, therefore, right that is quite trivial. So, therefore, right that implies that what

it implies is that since this is equal to P by my definition this conditional probability is P

for. So, let us just consider the valid shares in that case for a valid share therefore, this

probability or this condition probability is P and if this probability is P then that implies

that this is equal to P.

So, therefore,  it  implies  that  probability  of X i  hat equal  to X i  hat,  ok.  I  mean the

probability that your the part without the i-th share the vector is x i hat given that X equal

to small x is equal to p for all x and that would imply that if I want to calculate this

probability that what is the probability that if I leave out the i-th share right the vector is



say x i hat. So, that I can easily apply the law of total probability and I can calculate this,

right. I can condition this on probability of X equal to small x and multiply this with the

corresponding  conditional  probability, right.  So,  and this  I  can  do  over  pretty  much

sigma over x.

So, now note that this part or this part is always P is a constant P. So, therefore, I can

write this sigma of probability of X equal to small x right over all x and this part will

work out to 1, ok. So, I will get p here and what is this part? So, this you can easily see is

basically right leaving out one share, ok. So, basically it is nothing, but 1 divided by 2 to

the power of n into S x minus 1 because this vector has got dimension of n times S x

minus 1 because one of the shares has been left out. So, this is the vector of the shares

except that one of them has been removed.

So, therefore, this that the total vector was or dimension n S x if I remove one share then

1 goes. So, therefore, it is of n dimension n S x minus 1, and out of all these possible

values it can take only one possible value, and therefore, right this is equal to 2 to the

power of n 1 minus S x. And, this essentially proves that you know like the fact that and

actually you know like you have already proved your result because if you observe this

particular fact then; that means, right this probability and this probability are same, and;

that means, right this result is proved that X and x i hat they are independent, and the this

proves right that even if I give you all the shares, but I do not give you one of the shares

basically,  right  then;  that  means,  right  you  are  independent  it  does  not  leak  any

information about the actual data, in a in a very mathematical manner ok.



(Refer Slide Time: 12:01)

So, therefore, right I mean. So, now, what we will do is we will basically try to use this

definition and you know like define another important definition which is called as non

completeness. So, this was what is called as uniformity, the other result is what is called

as non completeness. So, again let us take the mass circuit as we have seen in previously.

So, note that here f 2 for example, depends on all the two shares, ok. For example, here

you can see that f 2 depends upon you know like all the 2-shares and therefore, right I

mean you can observe that if there is an attacker which probes the corresponding wire;

that means, probes corresponding f 2 can observe all the information required. So, for

example, here you can see that it has got X 1 and X 2 it is also processing on Y 1 and Y

2. So, it is processing on both on all the shares.

So, therefore, if there is an attacker who is probing the corresponding wires of for f 2

then basically it can it can pretty much observe all the information which is required and

therefore, right this essentially in the proving model you can show that this is not secured

in the presence of glitches because as I say that the you know like the probing captures

the fact of glitches, captures the vulnerability due to glitches and here you can observe

that if there is an attacker who probes right this particular circuit or this particular part of

the circuit is able to observe all the required shares and therefore, right can pretty much

obtain the information about the uncorrelated data because it knows all the shares if I

know X 1, X 2 then I know the value of X if I know Y 1, Y 2 then I know the value of Y.



A TI on the other hand ensures that if the attacker probes the wires it can only observe or

provide information for at most s in minus 1 shares and as we have already shown seen

that this is independent of the sensitive data. So, therefore, this brings us to the definition

of what is called as d-th ordered non-completeness which means that any combination of

up to d component functions f i of this vectorial function f must be independent of at

least one input share, ok. So, it must be independent of at least one input share based

upon that I will give my guarantees of what order of security I can protect against. So,

this we can easily see right is not secured in that model because if I probe f 2 then all the

shares get exposed. So, this is not this is not satisfying the you know even a first ordered

non completeness requirement.

(Refer Slide Time: 14:22)

So, therefore,  right what we need is we need to kind of do something better  and the

security  guarantees  that  if  the input  mask X of the standard function  f  is  a uniform

masking and f is a d-th order TI, then the d-th order analysis on the power consumption

of a circuit implementing f does not reveal the unmasked input value x even if the inputs

are delayed or if there are glitches which occurred in the in the circuit that is the security

guarantee that TI would provide.
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So, and again you know like it is very easy if I apply it for affine functions because a

standard way of doing that is as shown here. Suppose, I have got an affine function f

which I am applying on X to get A; so, you can implement this with s shares where s is

greater than equal to d plus 1 to thwart a d-th order attack.

So, what you will do is as follows. You will basically you know like write one part of the

shared which is or one part of the circuit is as shown here and denoted as f 1. So, note

that since I have got s here I will have got f, I basically you know like implement f as a

function of you know like f 1, f 2 and so on till f s. So, you are basically you know like

splitting the function f into shared functions.

So, you can see that the first function is shown here as just by just as f 1 X 1 is equal to A

1, and that is same as f on X 1, ok; whereas, for the other parts right I essentially write as

f i X i; that means, from 2 to s i write as f i of X i and that is equal to A i, where f i is

nothing, but f, but without the constant terms, ok. So, note that in an affine function right

you typically has got A into X plus B form, that is your form of an affine mapping.

So,  consider  example  suppose  you  have  got  1  XOR  X  which  you  would  like  to

implement using a TI mechanism. So, what we do is for the first component part we

basically just write f 1 X 1 and apply it on the same function f X, ok. So, you write that

as 1 XOR X 1, whereas, for the other parts you basically implement using this, ok. So, as

we have seen right let us consider let us consider an example to understand this. Suppose



you have got the function f X which is equal to 1 XOR X this is an example of an affine

mapping.

So, what I do is basically I have got s shares. The first share I basically write is a f 1. So,

this f 1 you can actually write it as shown here as 1 XOR X 1, ok. So, you see that here

we are using the same function as f just plugging in you know like X 1 as an input. So, if

I plug in X 1 as input I get 1 XOR with X 1 that is your f 1. For the other parts of the

share; that means, from 2 to s basically you basically again apply the same function, but

without the constant term, ok. So, you have got f 1 X 1 as you know like. So, in this part

you have got f i X i; that means, f 2 X 2 for example, is nothing, but X 2 and like this

right you have got f s X s is equal to X s.

So, you see that in one of the shares you have got 1 XOR X 1 and you have got X 2 to X

s. So, if you combine the results you get 1 XOR with all the XORs of X 1 to X s which is

nothing, but your X. So, therefore, if you combine the results you get one XORed with

the XOR of X 1 to X s and this is nothing, but X which is essentially what you want to

compute.

So, therefore, again you know like it is for affine mappings it is quite trivial and it can be

done in this manner, ok.

(Refer Slide Time: 18:08)



But,  on  the  other  hand  right  I  mean  this  becomes  more  complicated  when  you are

applying it on non you know like another kind of functions. So, now, we will see you

know like before I go into that and another important criteria which essentially would

help me to apply this on non-linear functions, 

So, for example, right let us consider a non-linear function as shown here as XY. So, here

is a first order threshold implementation of this scheme you can note that I have basically

split up X into three parts X 1, X 2 and X 3. So, one thumb rule that you can apply is that

if this degree is 2 then potentially I required three you know like three shares, and I

require you know like the implementing using a 3-shares and it can. So, here what we do

is that if I have got X, Y I implement them in the shares like A 1, A 2 and A 3.

So, the way a A 1 is working is that A 1 essentially operates on as you can see on X 2 X

3, but it does not apply on X 1’s or Y 1’s, and that is why that this satisfies the criteria of

it is non or incompleteness, ok. So, therefore, as we have seen right in the previous case

when we want the non completeness definition then at least one of the shares should be

left out and that is exactly what we see here. Here for example, X 1 or the first share has

been left out, similarly here the second share has been left out, here the third share has

been left out and these are the corresponding functions, ok.

If you combine this I leave it to you as an exercise to see that this should be leading to X

Y, and that  is  that  is  the correctness  of  your  definition  ok,  but  now there  is  a  very

important observation if you can see that if you do an what is called as a uniformity

analysis of the circuit, ok.
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So, if you do an uniformity analysis of this circuit then let us try to you know like do this

exercise. Suppose, I fix X equal to 0 and Y equal to 0 if X is equal to 0; that means, that

the  shares  X 1,  X 2  and X 3 remember  there  are  3-shares  should  get  XOR into  0;

likewise Y 1, Y 2, Y 3 should get XORed into 0.

So, therefore, if I get a table where I will make a table right with all these shares like you

know like say 000, 011, 101 and 110. So, note that these are the shares which essentially

will get XORed into 0, ok. Likewise you know like I basically kind of tabulate it in this

fashion that these are the shares for X and these are the shares for Y, and I try to find out

what are the output circuits; that means, you know like the moment I have got say 0, 0, 0

and 0, 0, 0 I feed it into these equations and find out the value of A 1, A 2 and A 3 and I

annotated in this table.

So, you can observe that if you want to do that then or if you do that basically you can

observe that I get many cases where I have got 0, 0, 0. I have got you know like I think

around seven cases where you have got 0, 0, 0. Likewise if you observe the case number

of cases where you get 1110 1, 1, 0; so, you get 1, 1, 0 here you get 1, 1, 0 here you get 1,

1, 0 here. So, there are probably three cases where you get that. Likewise if you observe

1, 0, 1 you get a 1, 0, 1 here 1, 0, 1 here and A 1, 0, 1 here which is again three cases. If

you observe 0, 1, 1; so, these are you know like you know like 0, 1, 1 and 0, 1, 1 here

and A 0, 1, 1 here. So, again you have got three cases where you observe that.



So,  now, imagine  that  this  particular  circuit.  So,  therefore,  you  know like  from the

security guarantee that we have seen if the input is uniformly masked and it satisfies the

definition of non completeness then this circuit alone should not leak any information

about the data. So, you can you know like so, likewise you know like the way we are

done the analysis for X equal to 0 and Y equal to 0 you can continue and do it for other

values of X and Y. So, remember that X and Y will have four possible values because

there are 2-bits here. So, if you do that then you will get a larger table where you know

like you take these statistics and we just dump into that table.

(Refer Slide Time: 22:11)

So, what you will get is something like this right here. So, you see that there are four

cases and I observe the you know like the distribution of the output values a 1, a 2, a 3.

So, these are the distribution of the output shares. For example I worked out this case

like for 0, 0 where this has got 7 and the other 3 cases have got 3 values whereas, these

are the invalid shares which will never appear.

Now, similarly you can work it for 0, 1; 1, 0 and 1, 1. Interesting right as we can see that

the  input  masking x,  y  is  uniform and a circuit  is  a  first  order  TI  satisfying all  the

properties that we have seen so far the circuit itself does not leak with respect to a first

order DPA adversary. For example, right if you want to observe that you can see that the

average humming weights for example, in the output for example, in all these three cases



you can observe that the distribution is exactly uniform, ok. So, exactly it the average

hamming weight would be the same in these cases.

In this case which slightly looks different. You will also work out that you can see right

that this is an interesting exercise to work out for example, the average hamming weight

here is 2 into 3, ok. So, you see that a hamming weight here is 2 and there are 3 cases

where this occurs. So, that 2 into 3, 6 likewise again this is 2 into 3 which is 6, 2 into 3

which is 6. So, you have got 6 into 3 which is a equal to 18, and there are totally right if

you add up it is I think 7 plus 3 is 10 plus 3 is 13 plus 3 is 16. So, the average hamming

weight is 18 by 16.

On the other hand, right so, if I if I do it for this particular case you will see that it is 5

into 1 plus 5 into 1 plus 5 into 1 which is 15 plus 1 into 3 which is 18. So, you still get

this  18  by  16  and  this  is  an  average  hamming  weight  does  not  depend  upon  your

uncorrelated data,  and therefore, right this is fine this is kind of secured against first

ordered DPA, even in the presence of glitches.

However, if you do this exercise you know like; however, if you do this exercise and for

you know like for you know like for the fact that what if you know if the circuit is fade

as an input to a second circuit then how in the second circuit behave, because remember

now the output distribution is essentially according to this pattern of a 1, a 2, a 3, ok. So,

this is the mask which is fed to the following circuit.
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So, if you do that right then you will see that you will basically get you know like you

can do an analysis like this. So, this is what we do. So, you take Z and now you combine

it with; so, this Z is again a uniform net, and you basically combine the output of this

previous  circuit  again  by  applying  an  AND functionality  ok,  but  this  AND is  again

implemented in the same way as we have seen previously, ok.

So, now I assume that Z is uniform and A is the output of the previous masks. Suppose I

fix x and y as 1 and 1, ok. So, that is the last row if you remember in the previous table.

So, here are the possible distributions of the output mask like 001, 010, 100 and 111; you

can see here 5, 5, 5 and 1 are the possible cases and z right essentially can take all these

four values, ok. So, if you now do a combination you will see that the number of possible

combinations are 5 into 4, because all these things can get combined with this. So, there

are like 5 into 4, ok.

For example, this 5 can combine with this 4. So, it is 5 into 4 it is 20; likewise 20 into 3

20 into 3 plus this can combine with 4. So, you will have 64 such possible combinations.

And, out of them right here is the possible you can observe that the, so, I am basically

trying to see how many cases I get output 00. So, it turns out that there are 31 cases

where the output mask will be 000, and so, basically you can work that out by just trying

these combinations. So, likewise if the output is 011 it is 11 cases, here it is 11 cases and

here it is 11 cases.

So, this you can get by combining these masks with these masks and again fitting into

the equations of the three a 1, a 2 and a 3. So, therefore, this essentially is for the fact

when x and y are 1 and 1 ok. So, you can actually take this and you can now again you

know like plug it into the bigger table.
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And, if you do that right then you basically  get a distribution as this. So, this is the

specific case where I showed where I showed you know like that this is 1, 1 and z is 0.

So, this is the one which I worked out here 1, 1 and 0 and you know the annotation is 31,

11, 11, right. So, this is again 31, 11, 11, 11. So, likewise you can work out the remaining

cases.

So, now if you observe the hamming weights the average hamming weight for example,

here is 11 into 2 into 3 because this is 0. So, this turns out to be thirty this turns out to be

33 by 32, whereas, if you try to do the exercise for the first six cases this will worked out

to something like 27 by 32. So, this shows that there is a deviation of the means with

inputs which will lead to a first order DPA attack even now.

So, note that if this function g was linear then this problem would not have appeared

because then that input distribution would have just got transformed into the output, and

therefore, there would not have been any problem, but that implies that now the question

is right if you have got an uniform mask and if you feed it in the next layer then how do

you apply it, and that essentially something that we need to consider we need to tackle.

And, the what we will do is basically you know like if we apply this then we will see that

how we can do that.



(Refer Slide Time: 27:52)

And, for that we have got final criteria which is called as uniform sharing of a function.

This says that if you want to make sure that the input of the sharing g which follows f is

also a uniform masking. So, basically this leads us or this observation leads us to the fact

that we need to properly cascade the non-linear functions. So, the idea is that we need to

make sure that the input of the sharing g which follows f is also a uniform masking.

So, therefore, right the criteria for satisfying this is often called commonly as a uniform

sharing of a function the idea is that the d-th order sharing f is uniform if and only if this

criteria is satisfied therefore, we are not only bothered about input shares, but we also

consider the output shares in this property, or in this criteria.

So, for that consider for all x which belongs to F 2 n and for all a which belongs to F 2

m; these are the possible input values and the output values where x results in a; that

means, f x is equal to a then for all the shares a which belongs these are the output shares

a and s out satisfying greater than equal to d plus 1, then the cardinality of this particular

set which basically tells me that if I take the input share x and if I obtain the output

shares a, the number of input shares for which this is valid. Essentially is given by this

ratio 2 to the power of n s in minus 1 divided by 2 to the power of n s out minus 1.

So,  the  rationale  behind this  particular  criteria  will  soon be cleared  if  we were  just

getting to the proof of why this leads to an uniform sharing, ok. I mean why it leads to a

uniform distribution of the output value, ok. So, remember that the problem was that in



the previous case we had a uniform distribution of the input which is essentially the you

know like the input x, but the problem was that we did not get that uniform distribution

in  the  output  a.  So,  now we will  see  that  why it  works  and for  that  let  us  see the

corresponding proof.
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So, the idea is that if you are masking X is uniform and the circuit f is uniform then the

masking a of a equal to f x which is defined by A equal to f X is also uniform. So, now

what we will want to do is that; so, likewise we had you know like we have seen that the

criteria for a uniform mask given by this conditional probability as shown over here. So,

in the previous case right if you remember right that a criteria was given by this notation

right it was probability of X hat equal to say this right this is the our output this is the

shared this thing shared value and X equal to small x. So, we basically calculated this

probability and we saw that if this is a valid sharing then this is a constant p, that was my

criteria.

If I want to get the similar property for the output right then I also need to look into this

and I basically this is my corresponding conditional probability because here my actual

value is A equal to small a I want to find out the conditional probability that there is a

sharing which is occurring given the value of a equal to small a and I want to basically

calculate this probability and I want to see that this is a uniform distribution.



So, this you can easily you know like obtained by you know like applying over all the

possible input x’s. So, you know these are all the possible input shares of x, and you are

basically  pretty  much calculating  this  by  taking  all  the  possible  you know like.  So,

basically  if  I  want  to  calculate  this  particular  condition  probability  then  I  will  be

calculating it over all values of X equal to small x and their corresponding shares, ok.

So, X is equal to this and X hat is equal to small x hat, ok. So, this is my or mathcal x.

So, these as so, I am basically calculating about the joint probability of these two these

two these two these two terms, and I calculate. So, if this be so; that means, if my input

X is equal to small x and my input sharing is denoted as mathcal X then I can feed it into

my equation, or my shared or my TI implementation and I get an output share.

So, this output share essentially right essentially is giving denoted as A hat and that is

equal to be right if I take f hat or you know like the TI implementation of f and apply x

hat I mean apply it on x hat then essentially it turns out to be this conditional probability,

where the input x is essentially you know like and I basically do a sigma such that over

all x where f x is equal to a, because f x essentially has to give me a and that is why right

I get that this a hat is equal to vectorial a.

So, therefore, right I mean if I now if you observe the inner probability in this summation

the inner probability in this summation is 2 to the power of n times and this is essentially

given by my criteria just we have seen previous to this it is 2 to the power of n s in minus

1  minus  m  into  s  out  minus  1,  multiplied  by  this  probability  by  this  conditional

probability into probability of X equal to small x because this again you know like this

particular thing has been broken up into these two terms probability of X equal to small x

multiplied by this conditional probability.

So,  now what  is  this  essentially  has  been  already  given  by the  fact  that  a  uniform

masking was obtained for input, and therefore, this is nothing, but 2 to the power of

minus I a minus n sin minus 1. This is already what we have derived in the previous

context of uniform masking and therefore,  right if I multiply this with this these two

terms cancels and I have got only this part remaining which is 2 to the power of minus m

s out minus 1.

So, note that this part right if I do a sigma over all values of X then this part sums up to 1

and therefore, right I get this result that this condition probability of probability of A



equal to a hat given be you know like A equal to small a is equal to now 2 to the power

of minus m s out minus 1 and is a constant p, and therefore, right it shows that the output

masking is also now uniform. So, the input masking is uniform and as well as the output

masking is uniform. Since the output masking is uniform now if I apply this as a input to

a to a following circuit that also remains nicely intact ok. So, there is also no leakage as

we have just now seen because of that, ok.

So, therefore, that essentially pretty much kind of helps us to ensure that we can cascade

the non-linear functions.

(Refer Slide Time: 34:28)

In fact, right what we will do is you know like just being more careful we will see. So,

therefore, right what we do is as here is an example of non completeness. So, again you

know if we take the example of x XOR yz; so, you have got three 3-shares for x like x 1,

x 2, x 3 and again y is here into y 1, y 2, y 3; z 1, z 2, z 3.

Here you can see that it has been realized by three corresponding functions. So, this is a

first order non-complete because you can see that every input right does not depend upon

one  shares  and  therefore,  right  it  is  satisfy  in  the  requirement  of  a  first  order  non

completeness.  And,  also  right  we observe  also  observe  that  we can  make  a  general

comment here that is to protect the function with degree d at least d plus 1 shares are

required, ok.



So, here the degree is 2 and therefore, we require at least 3-shares to realize this.

(Refer Slide Time: 35:18)

But, further right if you want to compose non-linear functions up a technique that we

follow is that we will separate non-linear functions with registers to prevent propagation

of  glitches,  ok.  So,  therefore,  if  you have  got  different  layers  then  these  layers  are

separated out by a registered layer so that the glitches here does get transformed into the

next layer, ok, just to ensure that there is no accidental decays which happens because of

you know combining cones or you know like circuit paths which are getting combined.

(Refer Slide Time: 35:51)



So, finally, right I mean so, here is an example or just to illustrate that for example, if

you take the case of AND gates right, why you essentially cannot realize it? So, the AND

gate essentially you know like you cannot realize using two shares, as you can do for an

XOR. For example, if I have got a 2-input XORs so, here it is shown as a XOR b; if I

want to realize a in two shares, then I just write a 1 XOR a 2. So, there is like their 3-

shares like a 1 XOR 2 XOR a 3 is equal to a; b 1 XOR b 2 XOR b 3 is equal to b and

likewise right you can see that you know like you can also the idea here is that for XOR

right you can easily do that because you can you can realize it using 3-shares of course,

you can also realize using 2 shares.

So, for example, right what I will do is I will just write here as I mean what I do here is I

basically take a as a 1 XOR a 2 XOR a 3; b as b 1 XOR b 2 XOR b 3. If I want to write c

1, c 2, c 3 as your corresponding output shares then what I just do is that I write c 1 as a 1

XOR b 1, ok. Note that I have left out the second one on the shares here. Likewise I can

replace I can realize c 2 as a 2 XOR b 2 I can realize c 3 as a 3 XOR b 3, this is non-

complete  and  also  uniform and  also  correct.  In  fact,  all  the  three  properties  can  be

achieved by using 2 shares, although we have worked with 3 shares, but you can also

work it with 2 shares.

To summarize TI design for non-linear functions are easy, but at the same time right it

would be interesting to see that whether you can do the similar thing for an AND gate.

(Refer Slide Time: 37:30)



But, it turns out that it is not possible for AND gates because if you want to realize an

AND gate with 2-shares then; that means, that you have broken up a into a 1 XOR a 2 b

as in to b 1 XOR b 2 and therefore, the corresponding output shares must contain the

following four terms a 1 b 1, a 1 b 2, a 2 b 1 and a 2 b 2 and you can do as an taking that

exercise  to  see that  these four  terms  right  must  be  combined into 2-shares,  but  you

cannot do in any way without violating the non-completeness definition, ok.

So, therefore, we put in right for example, a 1 b 1 and a 2 b 1 you can observe that this

depends on both a 1 and a 2 therefore, it does not satisfy the non completeness definition.

In fact, any possible combination would leak in would lead in to this conclusion and

therefore, you need to increase the number of shares.

(Refer Slide Time: 38:13)

So, you see here that if you want to make a TI of 2-input AND gate here is a solution

worked out with 4-shares, ok; x 1, x 2, x 3 and x 4. I leave it to you as an exercise to kind

of judge that this satisfies the definition of uniformity, non-completeness and at the same

time you know like that is correct at the end of the day. You can actually realize a circuit

with less number of shares, but at the at the cost of extra randomness for example, I can

reduce the shares from 4 to 3, but I need an extra I need actually extra random bits as

indicated as r 1, r 2 and so on. It is a challenge on how to realize a circuit with less shares

and also with less randomness, ok.



(Refer Slide Time: 38:35)

For example here you can you see a circuit where we can still realize an AND gate with

3-shares, but now with the lessen amount of randomness requirement. For example, here

there  is  only  one  random bit  which  is  required  and  therefore,  right  this  is  a  better

implementation in with respect to cost because any random bit right essentially is not

easy to develop or easy to generate and therefore, it comes with an accompanying cost,

ok.
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So, here is another example that you can observe for a lightweight TI based s-box. So, in

order to realize that consider that we have got and this is these are some popular tricks

which  people  have  developed  for  implementing  lightweight  TI  implementations.  For

example, if you consider this function f here you can see it is XZW XOR YW XOR XY

XOR Y XOR Z.

So, if you just straight forward apply threshold implementation on this you will see that

you will require 4-shares because it has got three degrees and therefore, you will require

4-shares. But, you can do it cleverly by for example, in this case what you can do is you

can observe or kind of define some intermediate variables say b 1, b 2 and b 3 as follows.

So, b 1 is nothing, but XOR of XOR Y XOR XW YW ok, b 2 is Z XOR XY XOR XZ, b

3 is XOR W XOR XZ ZOR ZW.

You can see that if I combine b 1, b 2 and b 3 right then so, therefore, you will observe

that you know like you can basically you know like these are the three parts in which the

circuit has been broken up for example, that is the three intermediate or you know like I

would say like intermediate variables which has been defined. The purpose is that now

you can write f in terms of b 1, b 2 and b 3. So, you can write f as b 1 applied on the

inputs b 1, b 2 and b 3 because you will see that now f you can write in terms of b 1 and

b 2 and b 3 in this way because f is b 1 XOR b 2 XOR b 1 b 3 XOR b 2 b 3. Again I

leave it to you as an exercise to verify that this correct. You can observe that this form is

exactly equal to this form, and this is nothing, but applying b 1 on the inputs b 1, b 2 and

b 3. So, you can write this as b 1 applied on b 1, b 2 and b 3.

So, now you can realize you know like b one by applying you can apply TI on b 1, but

the advantage now is that since it has got a degree of 2 you can realize it with 3-shares.

So, therefore, right I will break b 1 into b 11, b 12 and b 13 likewise b 2 into b 21, b 22

and b 23; b 3 into b 31 b 32 and b 33, and you can basically realize b 11, b 12, b 13 using

these equations. You can observe again this satisfies the required properties for TI, and

likewise I can write b 21, b 22, b 23 and b 31, b 32 and b 33 and since I know how to

realize b 1, now I can realize f also using these 3-shares where b 1 right will be broken

up into these 3-shares b 11, b 12, b 13 and b 2 will be broken up into b 21, b 22 and b 23

and likewise for b 3.



So, therefore, you can realize a entire TI in a controlled manner by not allowing you

know like the circuit to blow up and the cost essentially because you have to ensure that

at the end of day right that the cost for implementing the counter measure should be

suitably controlled. So, you can kind of compare this with you know like an effort to

straightforward apply a TI on this function where you will be requiring at least 3 plus 1

that is 4-shares, and therefore, this d and also I this non-linear circuit will significantly

you know like contribute to the blow up of the area requirement.
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So, if you realize this in this suitable way then at the end of the day if you remember

right that we had discussed about TVLA evaluations. So, if you take this S-box and do a

TVLA and then you can see that nicely that the leakage is within your threshold of 4.5 or

plus minus 4.5 and therefore, this indeed gives you a security and you can see that there

is potentially no leakage with respect to this kind of power attacks. So, this is this an

evaluation for a first order DPA requirement.
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So,  to  conclude  write  masking  is  a  popular  countermeasure.  However,  these  are

susceptible for first order attacks due to glitches. TI or threshold implementation gives a

method  based  on  secret  sharing  to  elevate  this.  We have  seen  some  properties  and

constructions on TI and here are some popular here are some references in particular I

would take your notice to the first reference which is essentially a PhD thesis, but nicely

gives  and you know like  having anecdote  about  how to  implement  TI  and also  see

various implications and further implications on threshold implementations if you are

interested to continue on this.

So, with this, I would like to say thank you for your attention, ok.


