
Hardware Security
Prof. Debdeep Mukhopadhyay

Department of Computer Science and Engineering
Indian Institute of Technology, Kharagpur

Lecture - 43
Power Analysis Countermeasures

Welcome to this class on Hardware Security. So, we shall in the last few classes we have

been discussing about power analysis in today’s class, we shall be trying to see how we

can Counter Power Analysis.

(Refer Slide Time: 00:27)

Specifically we shall be talking about a technique which is called as masking, which is a

very popular strategy to prevent or protect against power attacks and then we shall be

discussing about some pitfalls of masking and that will lead us to the introduction of a

technique which is called as TI or which is an abbreviation of threshold implementation.

We shall be trying to look into some of the properties of TI and also see some possible

constructions and we will finally conclude with some experimental evaluations and

results on a specific case study.

(Refer Slide Time: 00:59)

So to start with, how we can counter DPA? So, we as we have seen write DPA or

differential power attacks, fundamentally works by exploiting the fact that power

consumption depends upon the underlying data. So, these so there could be several

strategies and the strategies can be broadly classified into two approaches. The first

approach which is essentially a very popular is essentially by trying AdHoc design

techniques which essentially with objective of making power consumption of the device

independent of the underlying data.

For example right you can actually try to have a detached power supply you can try to

use logic styles with data independent power consumption for example, you can try to

bring in complementary logic for example, in one case right if you are complementing

with x in another circuit you are you are operating on x bar. So, the idea is that if there is

some net which is making a 0 to 1 toggle, there is some other net which is making a 1 to

0 toggle. Likewise right, you can also try to bring in techniques like noise generators,

inserting random delays, but the point is right most of these techniques are not essentially

in tune with the normal CAD methodologies and also right the methods are often costly

More importantly, these techniques being AdHoc do not guarantee against protections

against these kind of attacks. So, therefore, right it may happen that for example, if you

are talking about a complementary logic although in principle it looks very nice because

it would try to kind of pretty much make the consumption independent of data by making

it constant, but then it would also depend upon how you are routing your design inside an

(Refer Time: 02:40). For example, if the two circuits like the one which is processing on

x and the circuit which is processing on x bar are not routed in a very uniform manner,

then it may happen to still or it may still need to you know like I would say like it may

still need to non uniform power consumption which would still be dependent upon the

underlying data.

So, therefore, right these techniques often are costly and at the same time and you know

like do not give us an end to end security, but more importantly right these methods are

not amenable to our CAD methodologies and therefore, right the designer in the very

first place cannot try to develop or cannot develop his or her design with suitable

countermeasures.

(Refer Slide Time: 03:21)

So, this leads us to a second approach, which is essentially again with the objective to

randomize intermediate results, but in this case right you can actually apply this at the

algorithm level or at the gate level. So, therefore, pretty much you can implement them

and for example, the RTL level of the Verilog level and therefore, these methods are

more conducive and more desirable from the design point of view.

So, therefore, these are again you know like based on the principle that power

consumption of the device processing randomized data is uncorrelated to the actual

intermediate result. So, therefore, the idea is we will see is right it basically is built upon

this idea that if we can randomize the internal information and essentially process or

when we are and do our computations on the randomized information, then the power

essentially will be dependent upon the randomized data and not on the actual

intermediate results. So, therefore, right it would be statistically independent of the actual

secret which is being processed

So, masking is one such technique and it is a very popular technique which has been

adopted widely for protecting against power attacks.

(Refer Slide Time: 04:28)

So, principle of masking essentially is based upon the fact that no wire stores a value that

is correlated to an intermediate result of the algorithm and the process of converting an

unmasked digital circuit to a masked version can also be automated and therefore, right

this method is very popular and desirable from the CAD perspective.

So, as we will see right, in this kind of circuits there are two distinct parts, the one part

which basically processes on the mask and the second part right which processes on the

mask data. So, the idea is that if you are processing on a data right for example, any

intermediate value you typically try to kind of split it into two parts; one part which is the

mask which is essentially hiding your information and the other part which is the mask

data which is essentially nothing, but data camouflaged with the mask.

So, we have to basically process both of them in independent fashion and we have to

keep in very careful that no intermediate circuit is combining these two parts because if

we combine the mask along with the mask data then the unmask data is essentially

exposed and therefore, right we have to do the computation in a manner so that the actual

data does not get opened up during the computation.

(Refer Slide Time: 05:42)

So, let us start with a very simple example of trying to mask a fundamental gate. So, this

mask this is nothing but the AND gate and we would like to mask the AND gate ok. So,

as we know that in the AND gate, there are two important two inputs like it is an input of

a and b and you basically give an output which is say y or q. So, q is essentially a

function of a and b where a and b are your actual inputs it could be like single bit values.

So, in an in an normal unmask data we would basically do a processing on a and b and

therefore, the power consumption since depends upon a and b would leak information

about a and b and that is what we have seen when we are studying about d about DPA

and various versions of that. In a masked counterpart of this order in a masked AND gate

what we will do is that, we will basically take a which is a actual data, but rather than

processing on a we will basically mask a with a random value which is m a ok. So, ma is

my mask.

So, now once I once I for example, you know like so one way of masking is by applying

a bitwise XOR. So, we take a and we XOR it with m a, where m a is randomly our value

for either 0 or 1. So, it is again a 0 1 random value when I XOR it I get a m. So, a m

becomes my masked value and m a is called as the mask.

So, essentially right I mean you have got two parts. So, you have got for example, this

part which is essentially your mask, which is essentially randomly chosen so it is

probably randomly chosen from a 0 or 1 value, on the other hand I this part is essentially

what we call as the masked data ok. So, this is the masked data. So, now, once you

basically create these mask likewise you also mask b by using the mask m b and creating

the mask value b m.

Now, your circuit should process on a m ok. So, it is it should process on a m one second

it should process on these two parts, it should process on a m, b m, m a and m b. So, in

no case right it should process on a and b. So, the idea is that a and b should never be

processed together.

So, so therefore, right we will basically kind of convert this function f into another

function say f hat where f hat basically processes on these data these masked values and

you can see I have also used another mask which is essentially what is called as the

output mask ok. So, the idea is that if you take these output mask; if you take this output

mask and the circuit produces a q m, then the final result is obtained by using this

equation which is nothing, but q essentially is equal to the XOR of q m and m q.

But note that in any case right, if you have got a following circuit, you will basically

suppose the following circuit operates on q, but then the subsequent circuit also should

be processing on q m and m q. If I basically take q m and I combine with m q, then again

this data gets exposed which is not desirable so; that means, right in a subsequent circuit

I should again have a masked gate which will again process on m q and q m, but we

would not combine them. So, therefore, in no case right the masked data and the masked

value or the mask should not combine ok. So, therefore, the entire thing should be

processed in an independent manner through independent circuits.

So, let us now see for example, how we can mask or how we can convert the AND gate

into its masked counterpart in a way like in another way words right we basically would

like to see how to write f hat right given or know knowing that f is nothing but the AND

of a and b. So, that is what we will basically see subsequently.

(Refer Slide Time: 09:33)

.

So, so this brings us to this mask computation. So, basically right in a way what we want

to do is, we want to calculate a into b, but remember that there is a output mask say m k

m q. So, we know that a is nothing, but a m XOR with m a and b is nothing but b m

XOR with m b and XOR with m q.

So, therefore, right if I break it up then this is essentially pretty much the computation

which is done ok. So, you can see that it is nothing but, we have basically applied the

distributive property and basically kind of spread out the computations in this manner.

So, note that in this computation, there is no way right essentially we would basically

what we are trying to do is basically we are trying to write the computation so that actual

data a and b are not coming into the into play. At the same time, we have to also you

know like slightly restructure this computation because if I implement the circuit as it is

as shown here in this particular equation, then it will again lead to a leakage for example,

you can observe that if I you know like if I do the computation as it is like this then this

is nothing, but b m XOR with m a, a m XOR with ma and this data is nothing but a.

So, therefore, right although from the associativity properties, this is essentially I would

be you know like I mean this is this is so this is correct, but from the security leakage

point of view right this essentially is not the correct way of doing the computation.

(Refer Slide Time: 11:23).

So, basically kind of we have to rewrite or we have to kind of implement them in a way

so that in no case right we have got these kind of situations arising that is the mask data

and the mask should not combine together and this leads us to a specific circuit which I

will explain after this and basically right I mean the whole objective of doing this

masking is that as we know that there are 4 inputs I mean we know that we actually

know that there are 5 inputs taking the output mask also into account and each of them

have got you know like 4 possible transitions like 0 to 0, 0 to 1, 1 to 0 and 1 to 1. So,

note there are totally 1024 possible input transitions that can occur.

So, if you remember like we previously in one of our classes, we discussed about why

AND gates leaked ok. So, where there we saw that the average energy for e of q equal to

0 and e q equal to 1 are not equal. So, if you do the same exercise for the masked gate,

you can essentially do it again considering that the masked gate is a 5 input Boolean

function you can observe that it will turn out that the expected value of the energy

required for processing of q equal to 0 and q equal to 1 will be identical now, showing us

that if the gate essentially performs one transition at one time then there is no leakage.

However and that essentially means these are protected against DPA under the

assumption that the CMOS gates switch only once in one clock cycle, but we will come

to a you know like a different argument so, very soon where we will see that if there are

something which are called as glitches where essentially you know the output of the gate

will swing a multiple number of times before reading reaching a steady state, then still

there can be a leakage and the design right even after this protection can still be

vulnerable against power attacks.

So, at this point of time, let us consider that there are no glitch and let us assume that the

gate is switching only once in one clock cycle. Under this assumption, right we can

prove that e of q equal to 0 and q equal to 1 will be identical exactly in the same way we

prove that it is not identical in the case of a normal AND gate ok, proving that this circuit

essentially should be secured against first order DP attacks.

(Refer Slide Time: 13:23)

So, so therefore, right as I said that; however, if I want to really achieve that, we have

implement a circuit in a slightly clever way so that the masked data and the masked

value I mean the masked value and the mask do not combine together. So, one popular

masked implementation is shown in this diagram, this is also called as stretchiness gate I

mean if you for example, so this is essentially a masked multiplier which has been

shown, but in a similar way you can also think of a masked AND gate for example, what

you can think of is you can replace these multipliers by AND gates for example you can

think that pretty much there are like 4 AND gates ok. So, these are the 4 AND gates

which are together and there is an XOR. So, we can basically start processing on the

inputs like m b and m a. So, these are normal AND gates and you can take the output

mask which is m q and you can basically combine it with an XOR ok, so this is your

XOR. So, therefore, this is your output mask m q which is coming into exhorting the

output of m a into m b and then again you take these two inputs which are essentially

nothing, but m b again ok, so this is m b and this is a m and likewise let us complete this

part. So, you are you have got b m and this part is m a and likewise these two parts are a

m and b m right.

So, you basically take this two part and you again combine this by an XOR. So, there is

an XOR here, which is written over here you take these two this part. So, you can

basically combine this by an XOR and again you take an XOR function and this is your

finally, this part right is your q m because q m means because q m is nothing, but the

XOR of q and m q ok. So, this gate is also called as Trichinas AND gate. So, you can

observe that the whole; the whole way right the; I mean the principle of doing this

computation is to bring in this m q which is completely unrelated to a and b at the very

beginning ok.

So, you basically take two random values like m b, m a and you XOR it with m q right

and you start the computation from this side actually. So, therefore, right once you have

done this computation, you basically have got a m, a m b and then you are basically

combining them with this part and then you get this result you basically combine with

this XOR and then finally, you get this result. So one should be you know one can be

tempted so basically you can say this is a very skewed circuit. So, a possible temptation

could be that I would like to you know like make this circuit is little balanced and if you

do that right you will always see that you can end up in combining the masked data and

the masked value and therefore, right it is really a good exercise to see right that what

happens if you try to balance this circuit and it will happen that if you try to balance this

circuit then you are combining say a term like you know like for example, if I consider a

balanced circuit ok, so one may you know like by applying the principles of digital logic

right for example, can end up doing this computation. So, you know like I may be

tempted to say you know like combine these two parts apply an XOR here and again

combine these two parts apply an XOR here and then I would like to apply an XOR here

ok.

So, you can see that this basically makes the circuit more balanced and also probably

reduces the critical delay of the circuit, but if you do that right then what you are doing if

you observe for example, this point and if you observe this computation say this is a m,

this is b m and this is b m and this is m a ok. So, again right this part is nothing, but if

you take b m common it is the XOR of a m and m a and this part is again where you are

exposing a ok.

So, therefore, right this is a; this is a wrong approach ok. So, we cannot actually balance

the circuit in this way and therefore, right finally, I have got a circuit which is

unbalanced, but at the same time right is essentially secured against first order leakage if

there is no glitch in the circuit.

So, you can apply the same principle for realizing a multiplier where you basically

replace these AND gates by corresponding multipliers. So, you can observe that, you

know that the cost of getting this security is significant because in order to realize 1 AND

gate, now you have got 4 AND gates and you have got 4 XORs ok. So, therefore, there is

a significant blow up in terms of chip area and other peripheral costs, but at the same

time right is this is essentially sound in terms of DPA leakage.

So, now we will see you know like that whether thats the end of the story or there are

more things to be considered.

(Refer Slide Time: 18:46)

So, so therefore, right I mean we will basically consider masking and first order analysis

and here is a very an interesting way of observing or taking a relook at masking. So, in

this masking design, what we have done basically is that the intermediate variable X is

split into two random variables X 1 and X 2, such that X 1 XOR of X 2 is equal to X and

assume that again if I you know assume that the leakage is kind of modelled by the

hamming weight of X 1 and X 2, note that now you are not storing x in an register, but

the registers are storing X 1 and X 2 like the shares of X. So, X has been broken up into

X 1 and X 2, like we have broken up a into a m and m a so there are two parts that you

have broken up them broken them up into and therefore, the power consumption will

essentially depend upon the hamming weight of both X one and X 2.

So, if you just make a simplistic model like that and try to observe how essentially is the

leakage. So, you can see that, here this diagram shows or this table shows that my input

is say X which is 0 or 1, if I break it up if I write 0 right, then I would I can write the

masks as either 0 0 or 1 1 because both of them XOR to 0 and likewise right I can write 1

as 0 1 or 1 0.

So, now observe what is the leakage because of this x ok. The leakage here is 0 because

the leakage was 0 0 so that is 0, the leakage for 1 and 1 should be maximum that is 2 ok,

the leakage here is 0 1 which is 1 and the leakage here is 1 0 which is 1. So, now, if you

observe the mean leakage, the mean leakage right essentially so mean leakage means if I

take the mean when the input is say 0 ok, the values here are you know like 0 and 2. So,

if I take 0 and 2, the mean is 1, likewise right here if I take for the mean for you know

that the leakage for when the value is 1, it is here 1 and 1so the mean is still 1.

So, therefore, right from the first order point of view like when we are just like doing

first order when we are applying first order statistics that is when you are computing the

mean and doing your you know like DOM or correlation power attacks as we have seen,

the mean is not leaking any information and that is why right this is secured against first

order you know like or potentially secured against first order attacks, but if you observe

the observe the variance you will see that here the variance is significantly larger

compared to here, the variance here is 0 where the variance is here is 1 and therefore,

right from the if I try to do a second order analysis this will still reveal and you know like

because of this dependence of variance on x. So, this is important to keep in mind that

masking right in as we have defined is essentially first order resistant, but not resistant

against the second order analysis and therefore, right we can still we still like to improve

the basic design if you want to protect against a higher order attack.

So so, therefore, right I mean this is so therefore, the whole idea is that the so let us see

how we can develop basic the basic scheme, but before we go into that right what we

will also try to see is what happens you know like so, let us first of all define what is a

higher order masking.

(Refer Slide Time: 21:54)

So, in a so therefore, right we as we see that our design is not secured against second

order attacks. So, likewise right it is of course, not secured against a third order attack,

fourth order attack and so on. So, therefore, in if I generalize this in a dth order masking

what we will try to do is we will aim to randomize the intermediate sensitive data X by

splitting into d plus one uniformly distributed variables. So, like when we are protecting

against first order attacks, we have broken up our input x into 2 parts ok. If I want to

protect against a second order attack, we have to break it up into 3 parts; X 1, X 2 and X

3 such that they XOR up to get me X.

So, in a general generic setting right if I have got say X 1, X 2,X 3 and so on till X d and

X d plus 1 and I use some kind of operator to indicate how we are basically combine

them note that the masking right essentially the way we have seen is that this operator is

XOR and this particular way of doing masking is called as Boolean masking. As opposed

to this, there is another alternative way of doing masking where I apply for this operator I

apply a plus that is the integer addition and that is called as additive masking.

So, each variable X I, so in this case so you can apply both Boolean masking as well as

additive masking and each and you can observe the way in which we obtain the shares is

that if I want d plus 1 shares, I will randomly choose X 1 to X d and then I will choose or

calculate X d plus 1, I will compute X d plus 1 so that this equation is satisfied and that

you can easily verify that for example, if this is XOR what I do is I I kind of randomly

choose X 1 to X d and then I basically compute X d plus 1 so that their XOR is equal to

X which you can easily get by XORing X with the XOR of X 1 to X d.

So, therefore, at each variable X i is referred to as secret share and a secret sharing can

be done by randomly generating X 1 to X d and by computing the value of X d plus 1 ok.

(Refer Slide Time: 24:03)

So, so now we would like to see that how we can really hide behind the mask. So, given

an input shared there I mean I mean see how we can apply masking. So, 2 ciphers. So,

note that the ciphers can be typically having 2 types of transformations it can have linear

transformations or it can have non-linear transformations ok, for linear transformations

actually masking is very easy. So, because of this simple fact that if I break up X into the

shares like X 1 to X d plus 1then I know that by because of the fact that the linear l is

linear, when I apply l of on X 1 XOR so on till X d plus 1 that is equal to l of X 1 XOR

of l of X 2 XOR of l of X d plus 1.

So, therefore, right we can perform the linear operations on the masks ok. So, you can

still actually break, when the moment you have broken up the input X into parts you can

apply the linear transformations on each of these parts separately and you know that

when you combine these results you are getting the correct output ok. So, there is no

problem in that case.

(Refer Slide Time: 25:04)

So, likewise but you know like when you apply the process for a non-linear

transformation, then the process is much more complex. For example, right when I want

to compute say Z X XOR of X Y, where X Y as we know is a non-linear combination.

So, therefore, right one way of possibly, potentially masking this is as shown here. So, I

basically do Z 1 XOR of X 1 Y 1 and in the other share I basically calculate Z 2 XOR X

1 Y 2 XOR of X 2 Y 1 XOR of X 2 Y 2.

So, note that you know like in this case right, when I combine f 1 and f 2 then because of

the combination of Z 1 and Z 2 I get Z and X 1 Y 1 X 1 Y 2 if I combine right I get X 1

into Y 1 XOR Y 2 which is equal to y XOR of again X 2 if I take common Y 1 XOR Y 2

will be equal to; will be equal to Y. So, therefore, right if I take Y common then I get X 1

XOR Y 2 which is equal to X therefore, I get X Y. So, therefore, this is correct, but at the

same time you should observe that the you should observe the parentheses here, this is

very important because if this ordering is not properly done then again X 2 Y 1 will

combine with X 2 Y 2 which will lead to the leakage of the information on Y and

therefore, right I mean one should be very careful when you are applying you know like;

you know like associativity in this particular cases.

So, for example, here what we will do is, we will kind of combine X 1 Y 2 with an

independent data Z 2 and then I will combine it with X 2 Y 1 and then I will combine the

result with X 2 Y 1 which is essentially you know trying to keep it in secured against a

first order attack, but as we know that this is not secured against second order attack

because the moment I combine the leakage of f 1 and f 2, then all my shares are leaked

and therefore, the actual data is also compromised. Actually this is not even first order

attacks which is where the unfortunate news ok, this is essentially not secured if there are

something which are called as glitches inside a circuit ok. So, that essentially we will

study up you know like in the next class, where we will see right what is the effect of

glitches on these kind of circuits.

