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 So,  welcome  to  this  fourth  lecture  on  Hardware  Security.  So,  today  we  shall  be

discussing about certain topics on Finite Fields and also trying to understand about how

you can develop hardware architectures for some important finite field circuits.

(Refer Slide Time: 00:29)

 So,  today we will  be covering  these  concepts.  So,  we will  be starting  with a  brief

introduction into finite fields or what are called as Galois fields and then in particular

will be talking about characteristic two finite field pre-operations, which are well suited

for  arithmetic  and hardware  circuits.  In  particular  will  be  focusing  on  an  important

design on multiple of multipliers which are called as Karatsuba multipliers and discuss

also about how to perform a modulo operation in GF 2 and which is a very common

operations when we are dealing with such kind of finite field primitives.



(Refer Slide Time: 01:07)

So, to start with brief introduction into what are called as finite fields. So, a finite field is

essentially a field which has got finite set of numbers and the number of elements in the

set are is often called as the order of the field. And there is a result which says that a field

with ordered m exists if and only if m is a prime power; that means, m is of the form of p

power of n for some integer n with p which is a prime integer.

This p is often also called as the characteristic of the finite field. Another way of defining

a characteristic of the finite field is if we take a nonzero element in the finite field and

the characteristic of the field is the minimum number of times when we add the result to

itself; that means, we do a plus; a plus a so until k times and k is the minimum such

integer value for which the result becomes equal to 0. So, we have got different kinds of

different characteristic fields. For example, we have got prime fields and we have got

binary fields in which case p about the value of p is 2.

So, if you are interested for more introduction or more discussions on finite fields. So,

you can click into this YouTube clip where you can get slightly more details about what

fields in general or finite fields imply.



(Refer Slide Time: 02:27)

So, so, in particular as I said Galois fields are the elements of fields and elements of the

are where the elements of the finite fields can be represented by the numbers or elements

from 0 to p minus 1; that means, 0, 1, till so until p minus 1. However, if p is not prime

then the multiplications are not defined. So, therefore, it is important that p in general has

to be prime there is a concept of extension field where you take GF p and you extend it

to what are called as a extension fields and often denoted as GF p power of n with n

which is greater than 1.

And, it is the representation is slightly more complex and the elements in this particular

field are often represented as polynomials over GF p. So, I will be detailing this in my

doc. So, Galois fields form a very important class of fields which are used in several

cryptographic operations. So, it is important to have a have an understanding about how

Galois fields look like and how they can be represented and in particular how we can do

operations on such kind of field elements.



(Refer Slide Time: 03:33)

 So, as I said that the characteristic can be prime and also it can be 2 in which case the

field is often called as a binary finite field. So, a binary finite field or a field or a finite

field with characteristic 2 is where the set S consists of polynomials with coefficients in

0 and 1. So, here the field is often represented as GF 2 power of m as I said that the

general extension form field is GF p power of m.

In this case p is equal to 2. So, therefore, this is called or this represent representation

becomes GF 2 power of m. So, 2 power of m is the order of the field; that means, it is the

number of elements which are in the field. So, this forms a very important class of a

composite important class of finite fields because of the simple reason that the elements

or the underlying elements can be represented by values 0 and 1. And this essentially

makes it very conducive for arithmetic circuits because as we know that in arithmetic we

are  often  convenient  we  have  convenient  structures  when  we  have  got  binary

representations.

So, in particular when you are talking about GF 2 power of m you as I will mention that

you can actually represent them by a register of dimension m where each element in the

register is either a 0 or 1. So, in this case the representation or the hardware essentially

which is required to represent this element is very optimal I mean there is no wastage.

On the other hand and you can actually compare it for example, with GF 3 power of m



which is another finite field. If you take GF 3 power of m then the underlying elements

will be in GF 3; so, that means, they can be either 0, 1 or 2.

Now, if I want to represent elements 0, 1 and 2 then I need two bits. So, in two bits I can

actually or I should be able to represent four elements out of which I am using only three

values like 0, 1 and 2. So, therefore, the representation is not very optimal. On the other

end  right  when  you  talk  about  GF 2  power  of  m the  representation  is  optimal  and

therefore, the hardware right which you get is often much more compact compared to the

other fields.

In  particular  as  we  will  be  seeing  in  the  next  classes  is  that  the  famous  advanced

encryption standard is constructed using binary finite fields. So, it is important to have an

understanding about how binary finite field a arithmetic looks like.

(Refer Slide Time: 05:57)

So, as I say that how do we it is important to understand how do you represent elements

in a field or in a finite field. So, the customary way of doing that is by using this concept

of polynomials. So, what we do is that, we take polynomials over a field F and this is

often represented as an expression of the form of b n minus 1 x to the power of n minus 1

plus b n minus 2 x to the power of n minus 2 plus so on till b 0. So, in this case x is

called the indeterminate of the polynomial and the elements b n minus 1 till b 0 these are

belong to the belong to the field.



So, in that case we say that this polynomial b x is defined over a field f now what is the

degree of this polynomial now degree of this polynomial right is equal to l if the value of

b j becomes 0 for all j which are greater than l; that means, that l is the smallest number

with this property. So, the set of polynomials or what a field is denoted often and by this

symbol F x and the set of polynomials over a field which is a degree which is less than l

is denoted often as F x with the suffix of l so.

So, therefore, right when we talk about binary finite fields then he would imply that the

polynomial that I get here b x will have it is coefficients which are either 0 or 1; that

means, the coefficients belong to the field GF 2 which has got only 2 elements either 0 or

1.

(Refer Slide Time: 07:21)

So, now we would like to define operations on these polynomials or operations on these

finite field elements. So, the more the most fundamental operation as we know right in

fields is addition. So, we would like to take two a polynomial two elements a x and b x

which are represented as polynomials, which are field elements and we would like to

define an addition on them.

So, the usual way of doing that is we do why to do it coefficient by coefficient. So, so we

have got two polynomials like a x and b x which has got which has got coefficients

starting from a 0 to n minus 1. So, what we do is that we basically start adding them

coefficient  by  coefficient  so.  So,  therefore,  write  the  addition  as  is  very  easy  to



understand is that it is close; that means, if I take two polynomials and if I add them then

it also belongs to an element in the field. So, in that sense the addition is closed.

And, 0 would stand with 2 I mean will essentially the 0 in this field right is a polynomial

where all the coefficients are 0. So, therefore, if I for example, consider a binary find a

binary finite field if I you know like just take a x and if I add a x with a x then I would

get  that  all  the elements  will  have coefficient  0.  So,  therefore,  that is  essentially  the

identity element in the field.

So,  the  inverse  of  an  element  can  be  found  by  replacing  each  coefficient  of  the

polynomial by it is inverse in F; that means, like for example, if I take a polynomial a x

then inverse of ax will be b x where each of these coefficients are replaced by its inverse.

For example, if I take the GF 2 j to power of n field; for example, then if and consider a

polynomial a x where the coefficients are either 0 or 1. So, as we know I mean in Galois

2 right or GF 2 each elements is self inverse. So, therefore,  write I mean if I take a

polynomial a x and if I add it with a x then I would get the 0 polynomial; that means, all

the coefficients would be 0 in that case.

(Refer Slide Time: 09:27)

So, so likewise right when we as we did addition. So, here is an example of how we can

do you add. For example, the field is in this case GF 2 and if I take two polynomials

which are represented by these numbers 5 7, 8 3. So, in by binary right this 5 7 is the



hexadecimal representation. So, we take 5 and represent it as 0 1 0 and 7 as 0 triple 1.

And, likewise we take 8 3 3. So, 8 will stand as 1 triple 0 and 3 will be 0 0 1 1.

So, therefore, now in the polynomial rotation therefore, I will be starting with 1 here. So,

this is 1, so, this is x. So, the coefficient of x is 1 likewise the coefficient of x square is 1,

but x 3 right there coefficient is 0. So, I do not have that in the polynomial, but I have got

x 4. So, I have got x 4 and then I have got x power of 6. So, this essentially stands for the

polynomial or the number 5 7. Likewise we have got 8 3 and 8 3 has got 1 plus x plus x

power of 7. So, therefore, the polynomial is x power of 7 plus x plus 1.

Now, if I want to add these two elements then what I will do is that I will add them

coefficient by coefficient. So, therefore, in this case I see that 1 and will be added with 1.

So, one will be XOR with 1. So, remember that the or note that the addition in GF 2 is

nothing, but a Boolean XOR. So, therefore, for example, if I want to add a finite field

element 1 with 1, then I basically do an XOR or exclusive or between 1 and 1. So,

likewise right if I take x, then the coefficients are 1 and 1 on both sides. So, I do an XOR

with 1 and 1, ok.

So,  if  I  take  for  example,  the other  coefficients  I  essentially  do not  need to  do any

operation because there are no overlaps. So, now, we can do an XOR with in 1 and 1, so,

I get 0. So, therefore, this term vanishes likewise 1 and 1 0. So, therefore, the coefficient

x also is not there in the final polynomial and therefore, the final polynomial is nothing,

but x squared plus x power of 4 plus x power of 6 plus x power of 7.

So, one can note that the addition can be implemented with the bitwise XOR instruction

and there are no complicated operations which you need to do like for example, carry

which  you often encountered  in  other  cases.  So,  that  is  this  completely  a  carry  less

addition.
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So, ah, but the; however, right multiplication is slightly more complex. So, of course,

multiplication  has  got  the  properties  of  associativity  and  commutative  and  also

distributivity  with  respect  to  addition  of  polynomials.  So,  this  derives  from  it  is

fundamental field properties. So, therefore, if I take two polynomials a x and b x and

want to multiply them then one can observe that if I take for example, a field GF 2 power

of n that field is for a finite field. So, when I multiply a x with b x there is a chance that

the coefficients will become more than what the field allows.

So, therefore, what we need to do is we need to do a modular operation so that the final

result is brought back to the field. So, therefore, right we often have got once we have

defined these two operations like both the addition as well as a multiplication then we

have got this as what is called as a commutative ring and in particular right where each

element or each non-zero element in this field has got it is own multiplicative inverse

right; that means, if I have or if I can define an element which if I multiply with that

element gives me the identity element in with respect to multiplication then I call that as

a field.

So, therefore, this structure becomes a field now a ring will become a field for certain

choices of this polynomial which I do have with which I do this modulo operation. And,

with that  with that  restriction or with that  restriction of the polynomial  the structure

qualifies as a finite field or becomes a finite field.
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So, therefore, right I mean that that the qualifier or the property which the polynomial

mean needs to satisfy is often called as a irreducibility property of the polynomial. So,

this you can imagine as an analogy to what are called as prime numbers when we deal

with numbers.

So, an irreducible polynomial or a polynomial d x is irreducible over the field say GF p

or  Galois  field  p  if  and  only  if  there  exists  no  two  polynomials  a  x  and  b  x  with

coefficients in GF p such that the product of a x and b x is equal to d x; that means, d x

factorizes or factors into a x and b x where a x and b x are of degrees greater than 0; that

means, I do not get any non trivial factors of d x.

So, therefore, right let a if your field is GF p then with suitable choices for this reduction

polynomial;  that  means,  if  this  reduction  polynomial  satisfies  this  property  of

irreducibility then I get a field. So, therefore, if you for example, take that this particular

polynomial essentially satisfies the properties and say off irreducibility then finally, I get

a finite field which has got p to the power of n element. So, p is that characteristic of the

field and n is an integer which is the defined by the degree of my irreducible polynomial.

For example, like if my if the degree of my irreducible polynomial is say m; that means,

I have got a polynomial of the form of x to the power of m plus so on that means, any

element  which  is  there  in  the  field  will  have  a  degree  which  is  lesser  than  m.  So,

therefore, the write the number of elements that I will find in that field is p to the power



of m, and this is often customary represented as GF p power of m or GF p power of n if

m be n and then write GF p power of n is called as the extension field of GF p.
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So, now here are some possible examples, but we essentially can have bigger tables for

example, with degree 1 this is an irreducible polynomial, degree 2 we have an irreducible

polynomial,  degree  3  this  is  an  irreducible  polynomial,  degree  4  this  is  another

irreducible polynomial. So, these are all irreducible polynomials to define fields like GF

GF 2 power of 2, GF 2 power of 3, GF 2 power of 4 and so on.

One can observe that these are all either trinomials or pentanomials, but you cannot have

an irreducible polynomial with even number of terms. One of the reasons is if you do

that in this case for example, like if you have like a x power of 4 plus 1 as an alternative

choice of an irreducible polynomial then you can trivially see that x plus 1 is a factor of

that polynomial and therefore, that does not qualify as an irreducible polynomial. So,

therefore, right x power of 4 plus x plus 1 or x power of 4 plus x cube plus 1 on the other

end  does  not  have  such trivial  factors  and  therefore,  that  qualifies  as  an  irreducible

polynomial.

So, what I can now do is that I can take my I can take arbitrary polynomials I can take

arbitrary  polynomials  where  the  coefficients  are  in  GF  2  and  once  I  take  such

polynomials and I start reducing them or I do modulo operation with either or with any

of these you know like polynomials like say GF like x power of 4 plus x plus 1, then I



can construct the field GF 2 to the power of 4; that means, what I will try to do is I will

take any polynomial which has got 0 1 coefficients and then I will divide that polynomial

with  x  power  of  4  plus  x plus  1 as  a  choice  of  my individual  polynomial  take  the

remainder the remainder becomes an element in my field.

So, if I start constructing such fields then the maximum number of elements that I can

have in  the field is  2 to the power of  4.  So,  I  can have you know like 16 possible

elements in the field, but at the same time right this essentially is just one possible I

would say like one possible annotation of the field if you take another polynomial then

you will have another annotation of the field. And, one can show that all these fields

right are equally humorous, but they are not equal. They are essentially what are called

as their equivalent in some sense because they are isomorphic to each other.

(Refer Slide Time: 17:17)

So, so, with this background right I mean I just give you I will not go or solve this

particular problem, but rather I will just ask you with this question; that means, how you

can construct a GF 2 power of field using the polynomial say x to the power of 4 plus x

plus 1 is something which I leave to you at this point as an exercise.



(Refer Slide Time: 17:39)

So,  so,  now  let  us  give  me  let  us  give  another  an  example  of  how  we  can  do  a

multiplication  as  we  have  seen  addition  for  example,  which  was  very  easy,  but

multiplication would be slightly more complex. For example, if I take elements like 5 7

and 8 3 which are elements in GF 2 power of 8. So, 5 7 is as represented here and 8 3 as

represented here and if I take the polynomial notations, then I have got elements the first

element as I said before and likewise this is my second element.

Now, when I am multiplying these two elements then I can observe that for example, I

have got a degree here x power of 6 and I have got a degree here x power of 7. So, when

I multiply them then I have got my degree which becomes x power of 13, ok. Now, x

power of 13 right is not there in the field because my field which has got GF 2 power of

8 in this case can have maximum degree of 7, ok. So, it cannot have x power of 8 or

more than that as its degree. So, what about what I need to do is therefore, I take the final

result.

So,  for  example,  this  is  the  product  of  my  two  of  the  two polynomials  or  the  two

elements and then I need to reduce it or I need to take a modulo operation with this

polynomial;  that  means,  with  the  corresponding  with  the  corresponding  irreducible

polynomial for GF 2 power of 8. So, in this case I have taken the irreducible polynomial

as suggested in standard tables which is x to the power of 8 plus x to the power of 4 plus

x to the power of 3 plus x plus 1.



So, therefore, if I take this polynomial and if I reduce it, then or take the modulo with

this polynomial then I get x to the power of 7 plus x to the power of 6 plus 1. So, note

that  this  polynomial  is  in  GF  2  power  of  8  because  the  maximum  degree  of  this

polynomial is 7 and therefore, this is an is a field element I get an element in the field.

So,  likewise  right  I  can  show  that  multiplication  is  also  closed,  and  therefore,  I

essentially I have got a nice field structure on which I can define my arithmetic both

addition as well as product.

(Refer Slide Time: 19:33)

So, so, therefore, right the finite field is therefore, you know like here is another example

of how we can do it or how we can do it for it. So, this example is with slightly smaller

field. For example, the field is GF 2 power of 4. So, there are two elements like x power

of 3 plus x square plus 1 there is another elements x square plus x plus 1, when I am

doing multiplication the first step is a normal school book operation where I elaborate or

get the partial products and then I start adding them. 

Note that the addition is in done in GF 2; that means, if you have got 2 x square elements

like x square and x square then you do not get that reflected in the result because when I

am adding x square with x squared; that means, that the coefficients are XORed; that

means, one gets XOR with 1. So, you get 0 here.



So, therefore, in this case the result is x to the power of 5 plus x plus 1. Again like before

this is not a field element because this does not belong to GF 2 power of 4. So, therefore,

I  need  to  again  do  a  modulo  reduction  operation.  So,  the  modulo  the  irreducible

polynomial for GF 2 power of 4 is say x to the power of 4 plus x plus 1. So, basically

what I do is, I take this polynomial divided by x to the power of 4 plus x plus 1 and I take

the remainder the remainder in this case is x squared plus 1.

(Refer Slide Time: 20:43)

 So, there are different choices of multiplication algorithms, ok. So, for example, I have

listed few of the important ones like Karatsuba, Mastrovito, Sunar-Koc, Massey Omura,

Montgomery and so on. You can observe that most of these algorithms have got space

complexity which is quadratic with the bit length of the arguments. On the other hand

Karatsuba seems to be interesting because it has got which is something lesser than that.

So, it is O n into the power of log 3 base 2; that means, it is more efficient compared to

the other ones in terms of their space complexity.

However, the choice of the multiplier is often defined by or determined by applications

for example, like if we have got you know like characteristic p fields I mean; that means,

GF p fields then often montgomery multiplication is a better choice. On the other hand

right if you design properly then a Karatsuba a multiplier has got its own merits and

therefore, right it is an important and interesting class of algorithm to study.
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 So, there are there are several other operations also right which you will probably see

when you are dealing with finite fields. So, the other important operation which we also

encounter  along with multiplication is  squaring.  So, in particular  when we are doing

squaring  in  GF 2  arithmetic,  then  the  computations  are  very  efficient.  So,  this  slide

shows how one can do squaring.

So, for example, the input polynomial which is a x is represented in this register and I

say that for example, this is an element in GF 2 power of n where n is some integer value

and then when you are trying to do a squaring operation then what you just need to do is

you need to interpose the corresponding bits by 0’s. So, this you can understand easily by

if we just considered this calculation.
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For example, if you take a polynomial say a x which is essentially nothing, but a n minus

1, x to the power of n minus 1, plus so on till a 0 and then you want to do a squaring. So,

basically what I mean is I need to do a x and I would like to square that. So, the square of

this is nothing, but a x to the n minus 1 x to the power of n minus 1 plus. So, on till a 0

and you would like to square.

So, now, I just leave it to you with this result here, but without going into details is that

when you do a squaring in normal operations right you get often coefficients which are

multiples of 2. But, in this case since you are dealing with this field that is GF 2 power of

n then all those elements will go to 0 because in this case 2 is nothing, but which is

congruent to 0. 

So, therefore, what you will get is basically a n minus 1 square, but again a n minus 1 is

an element in GF 2. So, n minus 1 square is also an minus 1 and n minus 1 x to the

power of 2 times n minus 1 plus say an minus 2 x to the power of 2 n minus 1 which is

like you know like the next element. So, you will get this us say another n minus 2 into 2

plus so on till a 0 which is the constant term of the polynomial.

So, therefore, right you can imagine that if you try to note the result right the result

essentially is nothing, but copying the original elements like a 0 and a 1 and the final one

is a n minus 1, but the coefficient here is x to the power of 2 n minus 1 and this is the

coefficient of this is x power of 0, the coefficient of this is x square. So, these are all even



degree terms whereas, the in between 1’s are nothing, but 0. So, this is your a n minus a n

minus 2, ok.

So,  therefore,  right  what  you basically  get  is  nothing,  but  if  these that  you take the

original  polynomial  coefficients,  but  you  just  interpose  them with  zeros  and  that  is

nothing, but your a x square. Of course, as you can see that x to the power of 2 n minus 1

is more than 2 to the power of n. So, therefore, this number is not an element in the field.

So, you need to do a reduction operation and bring the result back to the field.

So, so, with this background right I mean we can you know like go back and ok. So,

therefore, what you would still need to do is you need to bring the result back to the field

and the final result essentially should be back to the field means you need to do a modulo

operation. So, that the result becomes back or comes back to GF 2 power of n.

(Refer Slide Time: 25:29)

So,. So, so, the other important operation as I said is the finite field multiplication. So, in

finite field multiplication right there are different forms of multipliers, but I in particular

in specific right I will be trying to explain the Karatsuba multiplication which is a very

common  form of  combinatorial  multiplication.  That  means  the  result  when  you  are

giving the inputs a x and b x and the corresponding irreducible polynomial it gives you

the result a x into b x mod p x in just one single clock cycle.



And,  there  are  different  forms  of  commontoriel  combinational  Karatsuba

implementations.  Two very  a  common forms of  algorithms  are  what  are  called  as  a

simple Karatsuba multiplier and the general Karatsuba multiplier.

(Refer Slide Time: 26:09)

So, in particular right let us see how the simple Karatsuba multiplier works. So, in simple

Karatsuba multiplier you basically take the input A x and B x which you would like to

multiply  and you split  each of the polynomials  into  two parts  like  A h and A l  and

likewise B x into B h and B l.

So, now when you want to do this operation that is A x into B x, in a normal school book

multiplication right what do you do? We basically have got four sub multipliers. You

have got to multiply A l with B l A h with B l and likewise A h with B h and A l with B h,

ok. Now, in the Karatsuba setting what you do is you basically do the multiplications or

some multiplications A h and B h and A A h and A l and B l, ok, but the other part that is

A h into B l plus A l into B h you write them write them in this form.

So, you basically elaborate this term and write it as A h plus A l into B h plus B l. Note

that  if  you  do  this  then  there  are  some  extra  terms  which  are  you  know  getting

incorporated which are A h into which is A h into B l plus A l into B h, you would like to

subtract that, and in GF 2 arithmetic subtraction is nothing, but addition because both of

them  are  XORs.  So,  therefore,  in  order  to  eliminate  them  or  cancel  out  them  you



basically add A h into B h plus A l into B l and therefore, this is equivalent to A h into B l

plus A l into B h.

If you do that right then one can observed that the some multiplications that we need to

do are A l into B l into B h which you are again reusing here and the third multiplication

which is like A h plus A l  into B h plus B l.  Of course, you need to do some extra

additions,  but  we have reduced four multiplications  to three multiplications,  and that

gives you saving.

(Refer Slide Time: 27:55)

 So, you can apply this in a recursive manner. So, you can take m and assuming that m is

a power of 2 you can decompose into m by again m by 2 blocks which you can again sub

decompose and you can carry on applying this simple Karatsuba to a multiplication in a

recursive  manner,  ok.  But,  at  the  same  time  it  is  important  to  understand  that  this

Karatsuba multiply becomes efficient if you do a proper thresholding. 

For example, right if you go down two bits right then you what you are basically saving

is AND gates because in terms of with respect to bits right a multiplication is nothing,

but an AND operation and the addition is nothing, but essentially an OR operation on an

XOR operation, ok.

So, therefore, right when you are what you are basically saving is multiplications. That

means if you just go down to one or single bits then you are saving AND gates, but you



are  expending  other  gates,  ok.  So,  therefore,  that  may  not  be  very  you  know  like

efficient. So, basically you have to stop this applying the simple Karatsuba technique at a

suitable point so that you essentially can leverage the amount the saving you know like

the saving which you are getting at the cost of something.

So,  therefore,  right  thresholding  is  a  very  key  k  key  step  when  you  if  you  want

performance when you are implementing Karatsuba multiplications.

(Refer Slide Time: 29:05)

So,  there  is  there  is  another  flavor  of  Karatsuba  multiplication  which  are  called  as

general Karatsuba multiplication. In general Karatsuba multiplication instead of splitting

into two we split into more than two, ok. For example, an m bit multiplier is split into m

different  multiplications  and that  essentially  leads  to  another  flavor  of  multiplication

which are called as general Karatsuba.



(Refer Slide Time: 29:23)

So, I will come into that in slightly more details, but before I go into that let us remember

the LUT structure whichever FPGA has, ok. So, if I showed or discussed in the last class.

So, now, if I take these two multiplications which we discussed like the simple Karatsuba

which I elaborated and a general which I just mentioned right as another topology of the

Karatsuba multiplication and if you observe the lookup table and the gates right then you

see an important observations.

For example, light if you see the when we are increasing the finite or the m or value of m

or the other size of your finite field then in the context of general Karatsuba then you see

that the gate count increases significantly compared to the simple Karatsuba, ok; that

means, that general Karatsuba consumes more amount of resources. But, if you go down

with smaller field sizes like for example, field sizes of 4 then you see that the gate count

right of the general Karatsuba is essentially 37. But, interestingly if you see the look up

table counts then you see that the lookup table count is less compared to that of the

simple Karatsuba. For example, here you see it is 11 whereas, here it is 16.

So, this is because the general Karatsuba for smaller dimensions or in general has got a

bit  add  LUT underutilization.  For  example  the  LUT underutilization  for  the  general

Karatsuba  is  something  like  45  percentage  when  you are  having  a  field  value  of  4

whereas, the in the underutilized for simple Karatsuba is always around 65 percent or 66

percent.



So, therefore, right you can actually adopt a strategy where you can actually apply the

simple Karatsuba when you have got a higher dimension of m. But, as you go down

when you are doing this recursive operation you switch from the simple Karatsuba to the

general Karatsuba because for smaller field sizes the general Karatsuba would require

lesser  number  of  LUTs and  therefore,  would  be  more  efficient.  So,  this  particular

structure is something which we call as the hybrid Karatsuba and therefore, it right it can

give you two more compact designs.

So, basically what we do is for all regressions which are less than say some specific

threshold.  So,  in  this  case  in  our  case  it  was  29,  but  it  will  vary  from platform to

platform. So, we one can use the general Karatsuba multiplication or the school book or

even the school book multiplier, but for all higher recursions right we use the simple

Karatsuba as essentially as a word the broad Karatsuba operation.
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So, for example, like in this case we give an example with 233 bit. 233 is because you

know like many of our cryptographic operations works on 233 bits as I will be telling in

the next classes. So, 233 bit is something which is not an even number, so, we cannot

decompose into equal partition.  So, what we do is we decompose into say party one

partition  of  a  116  bits  another  partition  of  107  bits  17  bits  and  then  carry  on  this

decomposition  and I  say that  there  is  a  specific  threshold below which I  switch my

algorithm.



So, I essentially apply a different flavor of multiplication. In this case I have applied

general Karatsuba, but even a school book multiplication would be interesting to see.

The  main  thing  is  that  you  have  to  change  from  the  standard  Karatsuba  because

otherwise right there will be an there will be wastage of the look up tables.

So, what we will do is we will basically right we will I we will stop here and in the next

class right we will try to go into more details, where we will be trying to go into or we

will try to understand how to implement this basic structure. So, we will try to see how

we can realize the structure on Verilog and we will see that how we can develop a design

or  rather  develop  and  complete  into  and  Karatsuba  or  multiplication  algorithm  on

hardware. So, with this I would like to thank you.


