
Hardware Security
Prof. Debdeep Mukhopadhyay

Department of Computer Science and Engineering
Indian Institute of Technology, Kharagpur

Lecture – 37
Power Analysis – XIII

 So, welcome to this next lecture on power attacks. So, we shall be continuing our

discussions on power attacks on elliptic curve hardware. So, in the last class we were

discussing about power attacks or simple power attacks on elliptic curves. In today’s we

shall be discussing that those designs are still all remains against DPA and therefore, we

shall try to see how we can protect them and we should be considering some more

improvements in the attack.

(Refer Slide Time: 00:39)

So, to start with right I mean essentially today, we shall be covering this concept. So, we

shall be looking into DPA on E C C, we shall be talking about a specific way to

implement elliptic curve hardware, which is called as Montgomery's ladder and we shall

be trying to look at it in the context of power attacks.

We shall be trying to look at it interesting technique of protecting in this D P A, which is

called as Coron's blinding technique and we shall be also reflecting on an attack, which

is called as doubling attacks, which is relevant on the Montgomery ladder and also

maybe relevant on the Coron’s blinding technique.

(Refer Slide Time: 01:07)

So, let us see, you know like this is essentially this; what is called as a Montgomery

ladder. So, in Montgomery's ladder the idea is that you again this is an type of algorithm,

where you do both doubling and addition and the interesting thing is that I mean there

are essentially right.

You can as we, you know like you can actually implement it in a very efficient manner

ok. You can essentially like if you are using projective coordinates for elliptic hardware,

then you can we can as well do this without the y coordinates.

Therefore, you can actually remove one of the coordinates and you can still do it you can

still implement it ok, but today we shall be discussing the at this at more from the context

of power attacks, but first let us have a quick look to understand that we really

understand how the algorithm works. So, therefore this is your scalar that is d is your

scalar which is d is equal to this a binary.

So, as we have done right we have basically taken d and we have written it in the binary

format. So, therefore, suppose d k minus 1 d k minus 2 so on until d 0 is your scalar that

you have and d k minus 1 is 1 though therefore, we are assuming that d k minus 1 is 1.

So, we will be starting the processing from k minus 2. So, what we do is basically

initialize Q 1. So, now we have got two registers Q 1 and Q 2 we initialize Q 1 to P and

Q 2 to 2 P and the idea is that if d i is equal to 1; then we are basically adding in Q 1 and

we are doing doubling in Q 2.

Whereas, if you are doing if you know like your d i is 0 then you can you have basically

adding in Q 2 and you are doubling in Q 1. So, this form of representation is very

efficient, because you know you can actually implement this loop also in a slightly

different way where you can remove this, if statement you can actually write this in a

way such that the suffix of the registers Q 1 and Q 2.

You can use it as the key bit so; that means, you can write something like Q b where b

stands for the secret key bit. So, this I am not elaborating at this point and I kind of leave

it as an exercise to think how we can write this Montgomery's ladder without the if

statement.

So, but rather what we will we looking at in today's class is that if you observe that the

reason, why the S P A was ordinarily working is, because there was a conditional

statement where you are doing an conditional you know where you are doing the

addition depends upon the secret bit, but here you can observe that irrespective of

whether the key bit is 1 or whether the key bit is 0.

You are always doing an addition operation, but in one case you are doing addition in Q

1 in the other case you are doing addition in Q 2, but you are always doing an addition

operation and therefore, you do not get that clear power signature to distinguish between

and understand what is the secret key bit, it works correctly. So, let us take an example

suppose your key is 91001 so; that means, we will processing from this 0. So, our

initialization is Q 1 is equal to P and Q 2 is equal to 2 P and then since k 2 is equal to 0;

that means, is your 0.

The secret scalar bit is 0 then what I do is, I basically if you see this branch, this one. So,

therefore, I come to this branch and therefore, I add in Q 2. So, I add in Q 2, which

means that Q 2 becomes P plus 2 P that is 3 P and Q 1 becomes the double of Q 1. So, Q

1 becomes 2 P then I get again 0, the next scalar is 0.

So, therefore, I do essentially the same operation; that means, I essentially add in Q 2.

So, Q 2 becomes 5 P and Q 1 becomes 4 P then I get a 1. So, now, what I will do is I will

add in Q 1. So, therefore, Q 1 becomes 5 P plus 4 P, which is 9 P and Q 2 is 8 P, but this,

we can use for if the, if the, if the scalar was longer, but then the result that we return is

essentially Q 1, because Q 1 is 9 P that you want to compute.

So, therefore, functionality wise this is correct and also it gives us an enhanced

protection against simple power attacks, because there is no conditional statement and

therefore, this seems to be more secure.

(Refer Slide Time: 05:23)

So, now let us see you know like. So, basically now let us look at it, at the with the

context of DPA ok. So, now, again let us recapitulate DPA little bit. So, as we have

already discuss the DPA is essentially a more fundamental form of this of attack, because

here we try to kind of exploit the fact that the power consumed is actually dependent

upon data.

So, what we did right essentially is kind of shown here in kind of informally as a

procedure. So, we basically gather many power consumption curves as oppose to simple

power attacks, we do on few power observations, we assume a secret ok. So, the secret

could be in the case of block ciphers and n bit value or in the case of a stream cipher

could be a single bit. In the case of DPA also we will do something like what we are

doing for stream ciphers that means we will do the attack in iterative fashion.

So, we will assume that we know the till i bits and then we will be trying to guess the i

plus 1 th bit. So, therefore, the guess is either 0 or 1 and we will basically trying to use

this DPA or distinguisher to understand whether my guess is correct or not.

So, basically what I do, if I guess this 0 and guess this 0 this the key bit to be either 0 or

1 and then we basically have a target register or target computation. So, now, the thing is

that if my guess was correct then my target is correctly computed and therefore, right I

will, I if correlate it if I, if I extract out a hypothetical power from that target register and

I correlate with my real power trace then I should get a very maxima I should get a

maximal correlation.

On the other hand, if my guess was wrong then that correlation will be much lesser and

therefore, I can distinguish and understand whether my key guess was correct or whether

my key guess was wrong. So, what I mean is essentially if I just take the, you know

simpler scalar multiply algorithm, I mean or the double and add algorithm.

So, what we are doing in the normal double and add algorithm is that you essentially are

doing a double operation. So, therefore, if you have got a point P you are doing at 2 P

operation always. If your scalared is 1; that means, if your d i is equal to equal to 1 then

you are basically adding right. So, basically you are doing. So, this suppose, I am you

know like having a register and I am writing R equal to 2 R, if this key bit is 1 then I am

writing R equal to R plus P ok. So, basically I am trying to calculate lambda P or maybe

d P in this way.

Right, I am trying to calculate d P in this fashion. So, therefore, right it means that I have

got the scalar d and I want to kind of add P d times. So, therefore, right here what I will

do is that, I will now guess this d i and I will target this register R. This the target, this

register R is constantly being updated, if my key bit was in the i th state was 0 then I

would have got 2 R.

But now, instead of that I am getting R plus P; that means, this 2 R is happening and then

I am adding P to it. So, the idea is that if my guess is 0 then I will be basically you know

like trying to kind of estimate what would be the value of R and from there so therefore,

my target register is my target. In this case is the register R and from there I will be

trying to predict, what is my hypothetical power value.

So, in case of C P A you basically find out the hypothetical power value in case of D O

M you probably target one of the L S Bs of this R suppose this L S B is 0 or the L S B is

1. You take all the power traces, you basically make a 0 bin, you make a 1 bin and then

you basically, you know kind of take the traces and put them into the 0 bins and the 1

bins. You take the average, take the difference of means, the idea is that if your guess

was correct then difference of mean is quite high; that means, there is a high correlation.

In case of C P A, you basically take the entire value of R, we predict the hypothetical

power value by some kind of power model and then you try to correlate that power value

with your real power trace and the idea is that you employ the calculate the Pearson's

correlation and you find out that the Pearson's correlation should be maximized at some

time instance, which is your point of interest. So, this is how you can adopt DPA to even

elliptic curves and essentially, the adoc should fundamentally work.

(Refer Slide Time: 09:39)

So, let us see how it will work. So, what we do is that if I want to do an DPA on the

Montgomery ladder for example, then essentially I again look back at the Montgomery

structure and I try to kind of find out how the you know like the Montgomery evolves the

or the Montgomery ladder evolves depending upon my key bits.

So, basically I start with my key d k minus 2, because that is the first key that I need to

find out. So, this key can, this key bit can be either 0 can be either 1, if I am not given

any side channel error trace, then I have got no clue to understand whether it is a 0 or

whether it is a 1, because the algorithm is nicely shielding this fact in a mathematical

fashion, but then what I observed is that if d k minus 2 is equal to 0 then there are two

registers like Q 2 and Q 1. Q 1 for example, you can see is equal to 2 P.

On the other hand, if this bit is 1 then Q 2, you see then we can see that this 2 P right,

never occurs like you will see that if this is 1 then Q 2 is 4 P and Q 1 is 3 P. So, therefore,

right, if you observes then rather than you know like targeting or correlating with the

value of 3 P, it would be an intelligent right or it should be more say and to basically

correlate it with the value of 2 P, because if the value, if the key bit is 0 then 2 P occurs in

one case whereas, 2 P does not occur if the key bit is 1. You can see 3 P occurs in both

cases, this is 3 P and this is a 3 P.

So, rather what I will try to do therefore, is that I will be trying to kind of correlate it

with 2 P, if it correlates with 2 P then the idea would be that that probably the guess is 0.

I will return 0 as my guess, if it correlates with 4 P then I will return 1 as my guess. So, I

can also confirm whether my guess is correct in this way, both of them you know like

should confirm ideally. So, this is a simple strategy that you can take and you can try to

kind of adopt your differential power attacks for elliptic curves even if that is a

Montgomery ladder implementation underlined.

(Refer Slide Time: 11:57)

So, so, therefore, right I mean with this we let us try to see again the set up. So, in this

case again we try to do a DPA with a real with real power traces. So, in order to , mount

the DPA attack you implement the Montgomery ladder on an F P G A platform, which is

specifically designed for power analysis attacks just like the one that we saw in some of

the previous classes.

So, the board basically provides a 1 ohm resistor between the power supply and the V C

C and pin of the F P G A. So, we measure the current which is drawn through that

resister during the elliptic curve scalar multiplication operation by a current probe. So,

we use as we discussed current probes of proper specifications.

So, there is a high S N R of your power traces ok. So, we know what is an S N R. So, the

we would like that the power traces high signal to noise ratio and then right we basically,

try to measure the power in a Tektronix oscilloscope or for that matter any oscilloscope

which has got high bandwidth. So, this is the oscilloscope that we use in our setup and

then we develop software tools to automate the whole process for varying inputs.

Now, the power consumption is proportional to the voltage drop across the register and is

measured in terms of millivolts, which is varied around 10 millivolts and the power

signal is also sample at a high sampling rate of something like 12.5 mega samples per

seconds, in our current set up, we essentially sample it at even a higher sampling rate.

(Refer Slide Time: 13:21)

So, therefore, right the ones we have that then we apply our DPA principle. So, DPA

principle is as we have discussed that with the same exponent d, you again you perform

repeated operations with different P values ok, because the scalar is which you want to

basically obtain is kept constant and you are basically, giving different P values and you

are computing different times you are computing d P basically like multiplying P with d.

So, the attack first targets the secret bit d k minus 2, which is processed at first iteration

and thus, we store the power consumptions during the first iteration of d P computations.

Now, the power consumptions are then divided into two sets based on the specific bit or

L S B in our case of 2 P, because we are trying to correlate with the value 2 P ok. We

calculate the mean power consumption of each of the sets and then the absolute value of

the difference of mean power consumption is calculated, as a difference of mean and the

similar processing also is done for 4 P.

(Refer Slide Time: 14:23)

So, here we observe an result. So, we basically show the differential plot when you are

trying to correlate with both 2 P as 4 P. So, you can see that we obtain a correlation with

2 P. So, 2 P is the color which is shown in blue and you get a correlation high correlation

that implies that we will be returning 0 and that turns out with the correct key. So,

therefore, on the other hand right, there is no correlation with 4 P, which means like that

a key bit is not 1 ok. So, basically you can do both the tests and can confirm your guess,

you can confirm your estimation.

(Refer Slide Time: 14:55)

So, therefore, right I mean we understand that the Montgomery's ladder is vulnerable

against differential power attacks, although it is resistant against simple power attacks,

but there is a simple technique or there is an very nice technique, which we can apply,

which is called as Coron’s point blinding method. So, here what you do is you choose a

random secret value R and compute S equal to d R ok. So, note that what I just do is I

calculate, I basically choose a secret value which is R so, designed internally does that.

Every time you are doing an encryption ideally, you should use a different R and then

you basically calculate S equal to d R and then what you do is basically, you blind the

point P by computing P plus R, because P plus R essentially makes it kind of, you know

you know independent of P, because you are basically choosing a random point and you

are blinding that point and then you multiply d into P P plus R that is you calculate d into

P plus R and you subtract out S.

So, you can easily see that this is nothing, but equal to d P, because d into R minus S,

because of this equation gets cancelled out and therefore, you basically are calculator in

d P, but at every step you are basically, doing this computation or you are doing this

computation both of them are essentially right, ensuring that you have a random

component which is coming into play. And the idea is that you basically, would like to

ensure that as I say that every time you are doing repetition of this, you should have a

fresh random values ok.

So, therefore, one trick that essentially you can do is you can use this equation to update

your blinders or masks. So, what I do is basically, I take a coin like a like a (Refer Time:

16:36) essentially stands is basically randomly sampled from 0 or 1 and then I basically

do this operation that is minus 1 to the power of b into 2 R and S dash minus 1 to the

power of b into 2 S. So, you can note that even with R dash S dash, this relationship that

is S dash is equal to d of R dash is maintained right and therefore, right you can use these

two blinders also in the next step, where you basically calculate maybe d into P 1, where

your you know like trying to calculate d P 1.

So, d P 1 you can calculate as d into P 1 plus R dash and subtract out S dash from this

right. So, therefore, right the idea is that every time you should do this operation then this

would be naturally resistant against a differential power attack, because every time,

because of this randomization you are ensuring that you cannot, the attacker cannot pick

up this correlations. So, therefore, right I mean this is quite nice and we basically right

can probably expect that this will be more resistant against power attacks.

(Refer Slide Time: 17:35)

So, we can see for example, that in the same case when we adopt the Coronas technique

then there is you know like this, there the correlations that we were getting to distinguish

between the key bit being 1 or the key bit being 0 are now gone ok. We then when quite

large number of traces like around 20000, there is no correlation with 2 P or 4 P and

therefore, Coronas blinding technique works quite nicely.

So, there is another class of attack, which I would like to consider here and essentially,

that essentially is what is called as is called as doubling attacks ok. So, we will try to see

how doubling works or doubling attack works.

(Refer Slide Time: 18:19)

So, just remember that in a Montgomery's ladder, we like when you essentially have the

original Montgomery's ladder so, and this is more you know like useful for

Montgomery's ladder is that.

(Refer Slide Time: 18:31)

If your key bit is 1, you basically add in Q 1. So, Q 1 is equal to Q 1 plus Q 2 and you

double in Q 2. So, you do Q 2 equal to 2 into Q 2, if the key bit is 0 then you add in Q 2.

So, Q 2 is equal to Q 1 plus Q 2 and you doubling Q 1.

So, now let us try to see and see how the evolution works, when there are two inputs

specifically, which were processing in the Montgomery's ladder ok. In so, in one case I

am processing m that is P equal to M in the other case I am processing P equal to 2 M

and the scalar that I considered is 1 1 ok. So, 1 1 followed by 0 0 1 0 1 and 1. So,

therefore, this is my corresponding scalar which I process. So, in the first case I say that

this is one. So, I will leave this, I will start from this one ok. So, because this is my

leading 1. So, I can just leave it right this point.

So, therefore, Q 1 here is equal to M plus 2 M and Q 2 is equal to 2 into 2 M likewise

right. In the next case I get a 0 here. So, if it is so, so, if it is a 0 then I will be adding in

Q 2. So, you can see that I add in Q 2. So, Q 2 is equal to so in this case you have got 3

M and you have got 4 M. So, I just get 3 M plus 4 M and Q 1 is equal to the double of 3

M, because this gets doubled. So, I get 2 into 3 M and then I have got 0.

So, again I have got 0, which means I will again be adding in Q 2. So, this turns out to be

13 M and Q 1 is equal to 12 M, because I am again doing double of 2 into 3, which is 6

M. Now, if this is 1, the next bit is 1. So, I get Q 1 as 12 M plus 13 M. So, I am adding in

Q 1 and I am doing doubled in Q 2. So, this becomes 2 into 13 M again I get 0. So,

therefore, I add in Q 2. So, Q 2 becomes 25 M plus 26 M and Q 1 is equal to 2 into 25 M

right then you have got 1. So, you have got Q 1, which is equal to 50 M plus 51 M and Q

2 is equal 2 into 51 M and next again you get a 1.

So, basically you do Q 1 equal to 101 M plus 102 M and Q 2 is equal to 2 into 102 M.

So, therefore right you can verify that Q 1 is equal to 203 M, which is what we want to

calculate. So, this scalar should stand for that corresponding result. Now, the interesting

thing is that let us see the evolution what happens is when you are processing 2 M

basically. So, again we will so a similar thing.

So, we will start here with Q 1. So, Q 1 is 2 M plus 4 M and Q 2 is equal to 2 into 4 M

ok. So, that is my first computation, which is being done. In the second case, I get a 0

here. So, therefore, I do Q 2 which is equal to 6 M plus 8 M right 6 M plus 8 M 4 M is 2

M plus 4 M is 6 M and then this 8 M.

So, I add in Q 2, because it is 0 and Q 1 is equal to the double of 2 into 6 M, which is 12

M ok. So, that again is my this processing then I get again a 0. So, therefore, I can add in

Q 2. So, Q 2 equal to 12 M plus 14 M and Q 1 is equal to 2 into 12 M right. So, that ends

my computation for this stage then I get again a 1. So, because of this 1, I will add in Q

1. So, Q 1 becomes equal to 24 M plus 26 M and Q 2 is equal to 2 into 26 M Q; Q 2 gets

doubled here and that is my end this evolution.

So, then I get a 0. So, Q 2 is equal to now 50 M plus 52 M and Q 1 is equal to 2 into 50

M ok. So, that ends this evolution and then you have got 1. So, because of this 1 you will

have Q 1, which is equal 100 M plus 102 M and Q 2 is equal to 2 into 102 M and that is

obtained at this point and then finally, right because of this 1 you have got Q 1 which is

equal to 202 M plus 204 M and Q 2 is equal to 2 into 204 M and that essentially means

this is your result and that essentially is nothing, but the result which you want ok, which

is the double of 203 M ok.

Now, interestingly you observe the; if the two successive key bits are 0 and if you target

the register Q 1, you will see that both of them compute the same value ok. Like in this

case it is 12 M, this is also 12 M here, also if these are 2, these are this 2 are ones and if

you target this Q 2; that means, whenever there is a doubling operation, you will see that

the doubling right essentially has got the same result so; that means, right.

We can write from here is this fact that if d i minus 1 is equal to d i then same doubling

operations then same doubling operation is executed is executed in the i minus 1 th

iteration of d into of d into 2 M and the i th operation of d into M ok.

So, this is an attack which you can still try on the Montgomery's ladder. Now,

interestingly observe that the way we were upgrading the mask in we are using

Coronas technique is that we had this R plus P. So, this we were modifying to R dash

plus 2 P. So, imagine that if you have got I do around with P and then I do around with 2

P then this is what will happen right.

I will I will add R plus P and here I will add some R dash plus 2 P, but the relation

between R dash and R is given by this relation minus 1 to the power of b into 2 R. So,

with a probability of 0.5 with a probability of 0.5 you still have that R dash equal to 2 R

and; that means, you are basically processing 2 into R plus 2 into P, which is 2 into R

plus P. So, here you are processing with R plus P with a probability of 0.5 you are, you

are processing 2 into R plus P.

So, therefore, right you can still try to fancy attack even when you have Coronas blinding

protection and therefore, you probably need to do something better to update your

blinding techniques ok. So, we will basically stop here and, we basically you know like

we will just conclude what we discussed and. So, basically the; what we discussed is that

the naïve E C C design is vulnerable to S P A.

(Refer Slide Time: 26:39)

The Montgomery's ladder is a safer design strategy with respect to power attacks,

because it prevents against simple power attacks. Coronas blinding technique is an

interesting way to protect Montgomery's ladder against DPA and doubling attacks are

more powerful D P A, which are possible on Montgomery's ladder and even right we still

can fancy our chances on even if there is a coronas blinding protection, which is updated

in the fashion that we described.

So, the two references for this discussion are you know like the M S thesis of my former

M S student. So, we can see this the URL for that and the PhD thesis for my one of my

former PhD students ok. So, you can go and see this references for more elaborations on

this topics ok.

Thank you for your attention.

