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So,  welcome  to  this  class  on  Hardware  Security.  So,  we  shall  be  continuing  our

discussions on Power attacks.  In fact,  today we shall  be looking the effect of power

attacks on a new on essentially a different kind of primitive like we have seen block

ciphers, we have seen stream ciphers. 

(Refer Slide Time: 00:30)

In today’s class, class we shall be looking an the effect of power attacks on elliptic curve

cryptographic hardware. Like we have already discussed about the ECC hardware. We

shall be trying to look at you know like the effect of SPA and DPA on ECC and also in

particular we shall be talking about the structure which is called as Montgomery’s ladder

to  implement  the  elliptic  curve  and  we  shall  be  discussing  in  the  context  of  power

attacks. Finally, we shall be discussing about Coron’s blinding technique and doubling

attacks. 



(Refer Slide Time: 00:59)

So,  before  we are  right,  I  mean let  us  quickly  recapitulate  about  power attacks.  We

already discussed this in several contexts like there are two different broad categories of

power attacks, one which is called as simple power analysis, other one which is called as

differential power analysis. In SPA the fact that we were trying to kind of exploit is that

the power or the power consumed depends upon the underlying operation which is being

carried out. 

For example, in the context of elliptic curves the power consumed for doubling operation

is different from the power consumed for addition operation. So, if we can you know

distinguish this in the power trace if we can observe this distinction in the power trace

then that can leave to trivial leakage of the secret key.

On  the  other  hand,  right,  DPA or  differential  power  analysis  is  more  sophisticated

because it basically tries to exploit the fact that power consumed of this is essentially

power consumed of the same operation is actually dependent upon the underlying data.

And therefore,  the dependence  being more fundamental  even if  there is  a  protection

against simple power attack that can break against differential power attacks. 



(Refer Slide Time: 02:01)

So, therefore, we have already studied that in SPA, right. We basically work with like

maybe 1 trace or may be 2 trace or may few 100 traces. And the trace is nothing but a set

of power consumption across cryptographic operations like when we take we will be

execute the cryptographic process, right, we are basically trying to measure the power

consumed of the total device.

 Not  only  like  of  the  specific  operation,  but  essentially  of  the  total  device  and that

essentially is what we called as the power trace. So, we have already discussed about the

power attacks setup and how do we you know like accumulate this power observations. 
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And, but today, right as we have already kind of probably understood is that in general

the lab setup is pretty expensive. So, here I shall be talk talking about in FPGA flow

which we you can easily setup for performing you know like fairly reasonable power

analysis ok. So, this tool is basically based upon you know the Xilinx environment, but

pretty much you can also try to find out equivalent components in other cat flows ok. 

So, without loss of generality let us try to understand I proposed methodology which we

can build up using this a tool which is called as Xilinx Xpower. So, Xilinx Xpower and

ISE are very you know popular tools of the Xilinx of essential  essentially is popular

FPGA tools and we try to develop a methodology using such kind of cat tools. 
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So, the idea is that first we develop a Verilog code as we have seen that we have writing

the Verilog code forward design. We synthesize the Verilog code using ISE tool. And this

particular after we have synthesized the Verilog essentially gets translated into a form

which is called as the netlist ok. So, next what we do is we take the netlist and in the

FPGA flow we basically map it into a FPGA resources the tool or the ISE tool does it for

us and the output is something which is called as a dot ncd file ok. 

Now, this dot ncd file is then pass to the place and route tool again which is a part of the

Xilinx tool chain where specific locations on the FPGA are assigned and the output is an

updated dot ncd file. So, you get an improved version of the dot ncd file. 

In ISE a flattened netlist can be generated after the map of the place and route tool. So,

you just need to give this commands like generate post map simulation model, it creates

a top level map underscore map dot v file. So, again this is the top level flattened netlist

which means like all the higher keys like, if you have when you design several modules

all the modules are kind of flattened to have the same level of abstraction, a single level

of abstraction and then you basically create a dot sdf file. So, dot sdf for, sdf stands for

the  standard delay  format.  So,  basically  this  particular  file  contains  the  delay  or  the

parasitic delays of your circuit.

So, you basically have you know like the various gate delay information, you have the

routing  delay  information.  So,  pretty  much  the  tool  whatever  the  tool  is  kind  of



predicting about your design essentially is kind of noted down or kind of recorded in the

dot sdf file. 
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So, now what we do is we basically write the or you know like add these to our test

bench we know that a test bench is a essentially a component that we have in Verilog

through which you basically gives simulate toward design. You basically give inputs to

the design and verify whether the output  is  as expected or not.  So,  what we add is,

basically we add these lines like initial begin and then inside that we write dot basically

we dump the dot dump you know dot vcd file. 

So, vcd file basically is nothing but it  contains the activity  of each and every signal

inside your design ok. So, it basically contains the switching of your design. So, you can

kind of try to understand that the vcd file has got you know like kind of it measures the

power consumption of the design, because you know like there are switchings which are

happening, and those switchings are recorded in the dot vcd file. 

So, therefore, right these are some commands which may work to download the dot you

know dot  vcd  file.  And  once  you have  this  file,  so  you know like  which  basically

contains the activity and therefore, you basically have a measure of the switching activity

which is kind of a measure of the dynamic power of your circuit and then what you can

do is you can you know like add a constant file which is called as dot pcf file and the dot



vcd file and the dot ncd files are used inputs to the Xpower tool and the Xpower can be

run by in the from the command line.

So, therefore, if you run it right then you will get a kind of profiling of power with time.

So, basically you will get a dynamic simulation of the power consumption. So, you do

not get a monolithic value of power at the end, but you kind of get you know like power

simulation which you can use as a representative of your power trace ok. So, this can be

a very you know I would say the e house arrangement of doing power analysis where do

not have access to sophisticated tools. 

Even otherwise, right, even if you have a access to sophisticated tools from here you can

try to understand what are the points of interest of your circuit and you can try to kind of

focus on your real power trace at those points ok. 

(Refer Slide Time: 07:05)

So, therefore, right this proposed this is you know like basically the what it does is the

this result which is produced by Xpower is present in a text file which is say called top

module dot txt. Basically, contains the instantaneous power consumption for the given

test vector. If the dot sdf file is also used in this simulation then the power measurements

use also the power consumed due to the glitches.

 So, it is pretty accurate in that sense, and pretty useful. So, using a post place and route

netlist gives a more accurate power profile and this feature is unfortunately disabled in



the present version of ISE. So, if you can go back and you know like get some of older

versions or maybe there are variants of this tool which you can try to still work with. 

(Refer Slide Time: 07:46)

So, what we will do here is that we would be again kind of look back at our elliptic curve

processor which we already design in one of our previous classes and this  is  a state

machine that we left at which we left our elliptic curves hardware. So, remember that we

have some initial 3 clock cycles, but most of most importantly, right, when then scalar

starts to get processed then you basically try to see whether your key bit is 0 or whether

your key bit is 1.

So, if your key bit is 0 then you just do the doubling operation which is shown by the

blue circles; that means, you pass it through like 4 clock cycles and then you basically

get out of this point and then you again come back to this state. So, basically you go like

D 1, D 2, D 3, D 4 and then again get back to D 1 ok. On the other end right, if your key

bit  is  one  then  you basically  go  through the  doubling  states  then  you go through 8

distinct states in addition in our state machine and then you again go back to D 1 ok. 

So, therefore, in this particular cycle as you can see there is a dependence, right, in this in

how you are basically migrating through the final state machine depending upon your

scalar bit ok. And that essentially is one of the reasons why we have a dissimilarity and

therefore, we will see that this particular design is basically vulnerable against simple

power attack ok.



So, the dissimilarity in this way right, is basically in the way that a 1 and a 0 in the keys

handled makes you know like the ECCP or the elliptic curve processor vulnerable to side

channel attacks or basically simple side channel attacks to be more specific ok. 
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So, let us see. So, therefore, right I mean there are several leakage which are possible

because of this observation that is you know like for example, even from the perspective

of  timing ok. If  you measure the duration  of an iteration  then  you will  see that  the

duration of the iteration actually depends upon the key bit, right, because if the key bit is

0 then you have a shorter cycle compared to you know like a key bit of 1, where are

doing both doubling and addition. And when the key bit is 0 you are only doing doubling

operation where you are spending 4 clock cycles whereas, right if you are doing addition;

that means, if the key bit is 1, your 4 plus 8 that means, 12 clock cycles in this particular

operation. 

So, thus measuring the duration of an iteration will give an attacker knowledge about the

key bit. So, if the attacker is able to understand this duration then it gives an easy way of

getting the key because it there is a clear dependence on that. There is a clear leakage,

ok. So, each state in the finite state machine also has a unique power consumption trace;

that means, as I said that as we discussed right, each of the each state in the final state

machine is doing a specific setup operation, right. And as we discussed, right one of the

fundamental premise of simple power attack is that power essentially depends upon the



underlying operation. So, therefore, every state has got a unique you know like footprint

in the power trace ok.

So, monitoring this power consumption trace therefore would be interesting to look at

and we will see how we can use it to understand the secret key bits ok.

(Refer Slide Time: 10:39)

So, we will take this example and we will consider some power profile. So, these are

pleased power profiles and got by our tool chain ok. So, you can try to do the same thing

in actual traces as well ok. So, you will not get exactly similar profiles, but you will get

your like the basic idea will still be the same ok. So, here is a power trace which has been

acquired with an all 1 key; that means, all the key bits are 1, whereas, in this case, right it

is all 0 which means like there is a MSB which is 1 followed by all 0s ok. So, that means,

here I am only doing doubling operations whereas, here I am doing doubling addition,

doubling addition, doubling addition and so on. 

So, now you can see that there is a clearly there is a distinction between these two power

profiles. You get spikes here and these spikes are additional power consumptions which

are due to the you know like the successive ones that you have in your secret key bit ok.

So, clearly let us by seeing up our power profile you can distinguish between these two

keys ok. And that essentially is a leakage, because ideally, right the power trace should

not speak anything about the key, and it should be silent about the key. So, immediately



you can understand that this is a vulnerable design. If somebody is able to observe this

power profiles then there is a sneak that he gets he or she gets into the secret key ok.

(Refer Slide Time: 11:49)

So, now, what we will see whether we can develop a systematic way of getting the keys,

ok.  And  this  is  basically  again  a  very  simple  technique  or  trick  that  we  can  apply

particularly for the design that we discussed ok. So, we can of course, develop more

sophisticated  techniques  where  we  do  you  know  template  matching,  power  pattern

matching and so on basically. But we will see that even a simple trick can work ok. 

So, basically what we observe is that the duration between two spikes in figure 7.1; that

means,  figure  7.1  is  essentially  this  figure  ok,  where  essentially  you have  got  some

spikes  over. So,  the reason why you have you know like  these spikes  is  because  of

addition ok. So, basically, right be the duration between these two between these two

spikes is the time which is taken to do a point doubling and do a point addition because

you are doing both doubling as well as addition and that is 12 clock cycles, 4 plus 8, that

is 12 clock cycles ok. 

So, if there are two spikes with a distance which is greater than 12 clock cycles therefore,

it means that there are (Refer Time: 12:51) 0s in between, right. So, basically what I am

trying to say is that suppose you have got you know like spikes like ok. So, let me clear

this up one second. 
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Suppose you have got spikes like say these are your spikes, which were getting in your

power trace and these basically are comprising of you know like the instance between

doubling and addition that is you are doing both double, you are doing both double and

you are also doing addition ok. So, therefore,  right  for double you have got 4 clock

cycles whereas, for addition you have got 8 clock cycles ok. 

Now, imagine that you basically observe this, you basically get two spikes, right and you

basically record that the time is t in between these two spikes ok. So, if t is equal to like

12 clock cycles you mean it is know that is like two once one after the other; that means,

there are no 0s in between, right. So, on the other hand, right if t is more than 12; that

means, if you know like the t is greater than 12 then you can understand that if there are

you know like if there are n zeros in between like n zeros in between ok, so every 0 will

correspond to only a doubling operation, right.

So, therefore, you can write that t will be in that case equal to 4 n t, because you know

like I mean will be equal to 4 n T. So, T means the time period or the clock time period,

ok so 4 n T plus 12 ok. So, what I mean to say I am talking about a key sequence where

there is a two 1s and there are n 0s in between ok. So, there is like 0 0 0 0 and there are n

0s ok. So, that means, if this is the time instance or time difference between them then all

the 0s will be doing a doubling operation, right. And therefore, every doubling will take

4 into T because T is the time period of my clock, so it will take 4 into T and there are n



0s. So, it will take 4 into n into T ok. So, therefore, I will get a simple equation like this

ok.

And if I know the clock time period then if I know the value of t then I can calculate the

value of n which is the number of 0s in between, right. So, basically, I can pretty much

just write this as you know like n would be equal to t minus 12 divided by 4 T and that is

nothing but t by 4 T minus. So, this will be plus 12 T because there are 2 you know like;

so you will have 12 T and therefore, t by 4 T minus 3 ok. So, therefore, right this is my

this is the simple equation that we will be trying to adopt in order to get the number of 0s

in between ok. 

So, now let us try to get back into a our presentation and see that this is the formula that

we use, t equal to n equal to t by 4 T minus 3 ok. So, therefore, this gives me the number

of 0s which are present and between two 1s ok.  And the number of 0s between the

leading one in k and the one due to the first spike can be inferred by the amount of shift

in the first spike ok. The first spike you can get by you know the number of 0s between

the leading one in k and the one because remember that we are always assume in our

algorithm that  the first  there is  the leading one,  right  and we are basically  trying to

process from the next from the from the bit after that ok. 

(Refer Slide Time: 16:32)

So, let us just try to apply this formula and see what how we get. So, for example, this is

an unknown key trace ok. So, we have got an unknown observation and the question is



like  can  we read  the  key from the  trace,  because  that  is  what  SPA tries  to  do.  So,

therefore, what we will do now is that we will see these spikes and we will time these

spikes basically, this will we will try to observe like what is the time difference between

these spikes ok. Suppose the attacker gets these spikes and looks at the x axis and finds

out the time distance between the spikes ok.

(Refer Slide Time: 17:04)

And you can see very interestingly there are 9 spikes, here, we can read out the there are

like 1, 2, 3, 4, 5, 6, 7, 8 and 9. So, there are 9 spikes here. So, 1 is below actually ok. So,

there are 9 spikes which you can observe here. Of course, you can understand that there

will be noise and sometimes you know like you will probably miss one or two spikes, but

here you can at least see few of them are pretty distinct ok. 

Like at least these ones are quite distinct. So, what I do is therefore, what I observe first

is that the distance between the spikes are not same. So, you can see like the distance

between these two spikes and the these two spikes and maybe these two spikes are quiet

different like this is like quiet wide apart,  right. So, therefore, you are expecting that

there are more 0s in between ok. 

So,  therefore,  we  find  that  in  our  case  the  clock  time  period  is  T  equal  to  200

nanoseconds. So, this is essentially the time that that the clock time of my processor, of

my elliptic  curve processor and the first  spike  t  1  is  obtained that  say some 3506th

nanosecond ok. So, if there were no zeros before t 1 then the spike would have been



present as 2706th nanosecond ok. So, the idea is that there is a shift of 800 nanosecond

and the reason why you have got this shift is because there are 4 clock cycles, the shift is

800 nanosecond which is equal to 4 clock cycles therefore, there is a 0 which is present

before the t 1 spike ok.

See, right because if there is one 0 present then for that one 0 you are doing a doubling

operation ok; that means, even before this spike has come up, right there are doubling

operations ok. So, therefore, there are 4 doubling operations ok. So, basically what I am

trying to say is that it is quite easy to obtain the time period between two edges, like

successive addition operations, but how do you get the number of 0s before you get the

first addition done ok. So, therefore, in this case we observe that what you should start at

2706 and it has starts from 3506, so there is a delay, there is a shift and that shift is

because of a doubling operation ok. 

So, now, if you observe the clock cycles like 1, 2, 3, 4, 5, 6 and so on you will see that

the first time the difference here is 2400 nanosecond and 2400 nanosecond if you plug in

to that formula that we discussed, right. This is the time interval between two spikes so

that means, if I plug in like you know like. So, this is the time, 2400 if you plug in here

like t by 4 T minus 3 then this is 2400 divided by 4 into 200 and that essentially will be

2400 by 4,  right is  600 divided by divided by 200 is  3.  So,  3 minus 3 is  0 ok,  so,

therefore, n stands to be 0.

So, therefore, we do it here and we find out that n is 0. So, n is 0 means there is no inter

between you know there is no in between 0 and therefore, you can infer that my initial

key was 0 1 that  is because of the first  shift  that  I told about like we have got one

doubling followed by addition.

But then the next one, right there is no 0, that means, this key is followed by this 1 is

followed by 1 ok. Likewise for the second time interval you get 2400 which again stands

for 0 which means this 1 is followed by 1 ok. Then you get the next time difference is

400 nanosecond. So, 400 nanoseconds stands for 2, so you can again plug in the same

form into same formula and you will get n as 2. So, n as 2 means there is one is followed

by two 0s and then there is a 1 ok. So, that means, right now you can you know like

pretty much read the entire secret key in this way and in find out that the key is 01, 1, 1,



001, 1, 01, 1, 1, 001 and this stands for nothing but B9 B9 and which is the actual key

which has been used in this elliptic curve operation ok.

So, therefore,  right,  I mean you can see that  you know like SPA works in this  case,

because SPA essentially is a pretty powerful tool because if because many of the our

designs, right if I do it as a beginner then I will probably not take care of this kind of

vulnerabilities and therefore, our design although it will be functionally correct will be

prone to this kind of attacks ok. So, therefore, what we need to of course look into is how

we can protect against this kind of vulnerabilities.

(Refer Slide Time: 21:30)

And therefore,  the first  resistance that  probably we can think of is  that let  us try to

develop an architecture where we do always add; that means, addition is always done,

rather than in the previous architecture where we were doing a condition of addition only

when the key bit  was one I  was doing an addition,  but  now I  will  take change my

strategy and I will say that I will always do a dummy addition at least ok. So, therefore,

what I do is it can be represented by the simple circuit.

 So, I do a doubling, and then I do an addition, but if the key bit is 1, right then I will

pass this addition I will multiplex this addition; but the key bit is 0 then also I am doing

an addition, but I am not using this addition rather I am passing this input to the output

ok. So, this is essentially nothing, but just simple a multiplexer idea it, but essentially this

should prevent our SPA ok.
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So, therefore, now again let us look back at our architecture. So, this was our original old

register block that we kind of design. In order to make this modification we have to

change in it in this data path ok. So, what we do here is now remember that we are free

register  banks, now along with this  free register banks we add an additional  register

bank. You can see that now there are 4 register banks. So, this register bank is basically

storing  the  result  of  after  the  doubling  operation.  So,  whatever  is  coming  after  the

doubling operation I am storing that in a temporary register file.

The idea is that if the secret key bit is 0, right then essentially I will take only the output

of from these register file ok. So, therefore, the addition which is happening even after

even if the key bit is 0 is something which I need to ignore because that is a dummy

addition operation that is if I take that then I will get a wrong result ok. So, therefore,

now you will see that because of this you know like register that we have introduced here

dummy register you can say which is storing the value of your or rather let me say it is a

temporary  register  which  is  storing  the  value  of  your  doubled  operation  or  doubled

output.

 Essentially needs also you know multiplexer at the input and also needs few additional

lines to get the result out in the output port ok. So, therefore, these multiplexers are also

little bit widened up because now you need also this these register outputs to be you

know like to be channeled outside.
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So, therefore, right there is a cost that you need to pay. I mean essentially but rather same

time, right if you observe the power profile now with this change, you will see that those

clearly distinct spikes are now not present ok. So, pretty much you will see that now

every you get additional or every time instance and therefore, this is this you can see that

even if I change the key the pedal will look roughly the same.

So, at least to the visible eye you will not be able to kind of easily demark it and try to

see that there is a dependence ok. So, therefore, the right-hand side power profile shows

a blunt profile and therefore is more registered against simple power attacks. 



(Refer Slide Time: 24:22)

What is the price that you pay? Of course, you have to pay a price because there are

some  additional  hardware  material  here  we  have  used.  So,  in  this  case  this  is  a

transformed FSM. So, now, you see the those conditional lines are gone, rather you know

like whenever you get into this doubling chain you ensure that you would do the addition

and then give get out only then you are not using that result ok, you are using the result

of the output of the doubled stage ok. 

So, the total clock cycle is therefore, always 12. So, in a way this is also timing attack

resistance or timing resistance because it is always taking the same number of clock

cycles to give you the output. So, the time essentially is not leaking about the key. So, if

you see the footprint on hardware you will see that there is a block that means, there is a

diminish in the frequency, there is an increase in the slice, there is a you know like the

increase in the number of clock cycles, but that is the price that you pay for this security,

for security. 
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So, now we will see how we can you know like; so now, we will basically consider about

how we can make it protected against further power analysis. For example, we will see

that even though it is protects against simple power attacks this is not secured against

differential power attacks, which basically tries to exploit the fact that power consume

depends not only upon the operation, but also for a same operation it depends upon data,

and therefore, this design would be still vulnerable against DPA. So, in order to protect

against DPA we need to do something more. So, that we will see in the next class.

So, thank you for your attention.


