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So,  welcome  back  to  this  class  on  Hardware  Security.  So,  we  shall  continue  our

discussions on the linear feedback, shift register and its resistance against power attacks.

(Refer Slide Time: 00:25)

So, we shall we be trying to discuss about power attacks of LFSRs and continue our

discussion on the standard stream cipher which is called as MICKEY.



(Refer Slide Time: 00:31)

So, we basically stopped at this point where we were reflecting on the you know like the

whether the Fibonacci LFSR is more vulnerable against power attacks compared to the

Galois LFSRs. 

(Refer Slide Time: 00:43)

So, so, let us try to analyse the Fibonacci LFSR, ok. So, here we basically you see that

the hamming distance or HD t that we have defined is the hamming distance between

two consecutive states of the LFSR at time t. So, it turns out that we define a parameter

called PD t and which is nothing, but the difference of consecutive HD t’s and this PD t



if I denote it as HD t plus 1 minus HD t, ok. So, the idea is that this two this value can

either be you know like minus 1, 0, or plus 1, ok.

So, if you remember right in the last class we basically defined PD dash, ok. So, PD dash

was  the  fact  that  if  the  power  consumption  remains  same  or  where  as  the  power

consumption defers. So, here you can see that the power consumption can remain same

in one of the cases out of three cases. Whereas, the power consumption can differ in two

cases out of the three cases; like when the PD t PD t is minus 1, there is a difference in

power consumption. Because you know like PD t 1 PD t minus 1 which means that HD t

plus 1 was one more than HD t, and that is why this value got minus 1 and therefore,

there is a change across clock cycles in the power consumption.

Likewise, when PD t is 1, that also implies that, the power consumption is increased, ok.

So, in both cases like in one case there is a decrease one case there is a increase, but; that

means, that there is a change of power consumption. So, in order for the attack to work

on real traces what we just need is to be able to distinguish on the from the you know

like the fact that whether the power consumption has increased or the power, I mean

whether the power consumption has remained the same or the power consumption has

changed. 

(Refer Slide Time: 02:35)

So, in this case right the PD t value is minus 1, 0 and plus 1, and this you can easily

understand. So, let us try to reflect on why this is so, ok. So, and that is pretty simple in



context to the Fibonacci LSFR, ok. So, in the Fibonacci LFSR remember that you have

the state, right. So, the state let us write it as you know like S n minus 1 S n minus 2 so

on till S 0. So, this is your LFSR state and you basically what you are basically trying to

do is you are calculating S n which is your feedback value, and this feedback value

depends  upon certain  positions  which  were  taking  from here  and  you have  got  this

feedback polynomial. So, this is your feedback polynomial which is nothing, but having

some XORs and then you basically calculate the value of S n. 

So, that means, right I can write the value of say at of you know like let us denote this

state as S T and the corresponding time instance by the suffix t, then; that means, that ST

t is this value right is basically S n minus 1, S n minus 2, so on till S 0, in the next time

instance you have got ST t plus 1. So, in ST t plus 1 what will happen is that this S n will

get into the register. So, it will be S n comma and this will get shifted, so, you will have

S n minus 1 and so on; this will continue till S 1. 

Likewise in the next time instance you will have ST t plus 2 and this is nothing, but S n

plus 1 comma S n and comma and this will continue till S 2. So therefore, right from

here we can calculate the value of HD t, right and what is the value of HD t as we have

discussed right it is nothing, but the hamming weight because of the hamming distance

between those two parameters. It is the hamming weight of S n minus 1 XORed with S n,

ok. So, that means, these two things are XORed, ok; likewise I will XORed these two,

ok. So, it is S n minus 2 XORed with S n minus 1 and likewise the finally, I got an S 0

XORed which S 1. 

Likewise if I want to calculate HD t plus 1 that HD t plus 1 is nothing, but the hamming

weight of I will be now considering the hamming weight means. This is these are the two

things that will be XORing now. So, I will have here S n XOR with S n plus 1, and then

again I will be XORing these two. So, it will be S n minus 1 XORed with S n, and like

this right I will be XORing these two. So, it is a S 1 XORed with S 2. 

So now, the definition of PD t is nothing, but HD t minus HD t plus 1, and you can

observe that here among all these terms you can see that this term matches with this

term, and likewise if you had observed the previous time to this right it should have been

S 1 XOR of S 2. So, this also would have matched with this one ok. So therefore, the

new term that is over here is one of them is this and the other one right is this, ok.



So, therefore, this difference would be nothing, but the hamming weight of S 0 or you

know like S 0 XOR of S one minus the hamming weight of S n XORed with S n plus 1

ok. So, note because these are the two things which are only different and therefore,

write in the final result will depend on the difference between these two.

So, this hamming weight right since is there hamming XORed of only 1-bit values these

can be either 0 or 1 and likewise this also can be either 0 or 1. And therefore, when I take

the difference then the difference can be either minus 1, 0 or plus 1, and that is why right

we have got three levels I would say here, but out of which right two are where there is a

difference,  and there is one case where there is no difference; that means, the power

essentially remains constant, ok. And therefore, right in this case right we will have the

PD dash value as 1 whereas in this case right your PD dash value will be 0 because there

is no difference. 

So,  now,  you  see  that  the  power  of  my  attack  depends  on  my  ability  of  directly

calculating this PD dash, which means of being correctly distinguishing this non-zero

difference from this zero difference. So, that means, I mean from the non-zero difference

from the I mean the non-zero difference from the zero difference, ok.

So, that implies that if right for example, if I have in this case right since there are only

two non-zero differences compared to one zero-difference we will  now compare this

with the Galois LFSR, and we will see that you know like the PD t dash values or in the

PD dash the PD t value there can take more levels, and that essentially will be my you

know  like  the  base  of  the  argument  or  base  of  my  comparison  between  these  two

configurations.
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So,  let  us  you know like  see  how this  PD value  looks  like  in  the  when we are  in

particular comparing and finding out the same stuff for the Galois LFSR.

(Refer Slide Time: 08:37)

So,  in  Galois  LFSR if  your  number  of  taps  is  N  and  for  an  LFSR with  primitive

connecting correction polynomial then N is even. And, in that case again I if I define PD

dash in a similar way we can argue that the PD dash the PD or the PD t value can have

more levels ok. So, you can for example, have levels of course, it will have some zero

values, but there are more non zero values; like it can have minus 1 to minus N, N N



minus 1 and likewise it can have from 1 to plus N minus 1, ok. So, that implies that in a

similar way. So, in a similar way if you do if you if you observe right then. So, likewise

right in this case if I take the PD t value and find out the zero difference case right in the

zero difference there is one case because this is your zero difference case whereas, there

are many non-zero difference levels. 

So, and the non-zero different levels also observed that for example, it can go as high as

up to n minus 1, ok. So, which means although you know so, if you are you know like

doing this attack on real power traces then you can intuitively understand that it will be

hard for you to distinguish these cases because they are almost close, ok. Whereas, if you

have got  some jumps  which  are  you know like  as  high  as  this,  then  they  are  more

discernible there more distinguishable from this zero level. 

And, you can see more you know like more details on this derivation in this reference

which has been shown here which is essentially a paper which is published in space in

2014 which talks about Fibonacci LFSR versus Galois LFSR which is more vulnerable

to power attack. So, you can see a derivation of this particular result ok, but at this point

right what is just important for us is to know this fact that in a Galois LFSR there are

more jumps which are possible the PD t value can simply take more levels. So, what is

the implication of this?

(Refer Slide Time: 10:39)



So, therefore, right when you are trying to attack the LFSR configurations for both the

LFSR conditions, right the PD t value equal to 0 when HD t equal to HD t plus 1 else the

PD t is a non-zero value and if the PD sequences are correctly retrieved from the real

power  traces  them  the  initial  state  the  secret  key  of  the  LFSR  can  be  completely

determined using Berlekamp-Massey algorithm as we have already discussed.

(Refer Slide Time: 11:03)

So,  therefore,  right  this  forms  the  basis  of  our  comparison  between  these  two

configurations  to  retrieve  the  PD  sequences  correctly  we  need  to  implement  a

thresholding operation on the real power traces because in real power traces you to have

a proper threshold to tell that this is you know like a zero difference and this is a non-

zero difference because you will have real values on the in the power trace.

So, more the difference between a zero and non-zero level therefore, better will be your

you know the result of thresholding and because the effect of noise will be less in such

case. You will have a high you will have a better distinguishing power. So, as we have

seen in case of Fibonacci LFSR the magnitude of non-zero values is only 1, which means

the zero state the zero difference and the non-zero difference are very close to each other.

On the other hand, in a Galois LFSR, the magnitudes of non-zero values is very large. It

can go as high as n minus 1, ok. So, it is pretty large.
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So therefore, right it is clear that the difference between zero and non-zero levels of PD

sequences is higher in the Galois LFSR than it is Fibonacci counterpart, ok, as we have

seen that the gap is much wider in the Galois LFSR. And therefore, right the there is a

higher distinction possible in the case of Galois LFSR between the two levels and this

implies the effect of low SNR power sample points is less ok; that means, the effect of

noise will be less in the case of Galois LFSR. 

Because, remember that if there is a noise on top of it right then there is a there is a quite

high chance that the 0 and the 1 difference will get blurred. Whereas, right if you have

got large differences possible as we can see that is possible in the case of the Galois

LFSRs, then the effect of noise will be less, ok. So therefore, right we can conclude that

the Galois  LFSR configuration  is  most  vulnerable  to  power attacks  compared to  the

Fibonacci counterpart.
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You can also experimentally observe this. So, this is an example of an attack which has

been done on the Fibonacci LFSR shown by the grey colour compare with a blue colour

which talks about the Galois LFSR. And, we have done several you know like instances

of the in the attack is shown in this graph and you can see that in almost all the cases for

the Galois LFSR, the correct percentage of retrieval of the PD sequences is higher, ok.

So, this bar shows you know like the correct percentage of the retrieve of retrieval of the

PD sequences and as you can observe that the you know the retrieval rate is higher in

case of the is higher in case of the Galois LFSRs and that is also expected from the

theory that we just discussed. So, now with this background right it basically tells us that

even stream ciphers like block ciphers are also vulnerable against power attacks or DPA

attacks.
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Let us try to see you know you know like if I try to apply a DPA on an actual stream

cipher. So, in an actual stream cipher right you will not have only like one single register,

but may be you will have much more registers. So, MICKEY or what it stands for you

know that the MICKEY was essentially a stream cipher which was designed by Babbage

and Dodd. And it was selected as one the three hardware oriented algorithms in the final

portfolio  of eSTREAM which was a movement  to you know or a you know like to

basically standardise stream ciphers.

So, the stream cipher MICKEY which stands for Mutual Irregular Clocking KEYstream

generator is aimed at resource-constrained hardware platforms and is intended to have a

low complexity in hardware while providing a high level of security in.  In fact, you

know MICKEY 2 and MICKEY 128 2.0 have got security levels of 80 bits and even as

high as 128 bits respectively.
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So, this is how the MICKEY looks like you can see that there are two registers; register

R which is a linear feedback shift register and register S which is a non-linear feedback

shift register. And there are there is a control for the independent control for the register

R and for the register S, ok.

So, that means, the feedback essentially or the clocking of both the LFSRs is essentially

takes place in a somewhat irregular way and that is why the its name. And there are

finally, XOR to get your keystream way bits this is the corresponding output of your key

stream generator.
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But, there is you know like. So, there are different stages of how of this particular LFSR

works. So, as I said that MICKEY 128 2.0 takes two input parameters it takes a 128-bit

secret key K. It also takes a initialisation vector which is a public information which is

between 0 and 128-bit bits in length. The cipher text is produced from the plaintext by

bitwise XORing between the key stream bits and as we have seen right, in most in stream

ciphers that this is the output bit you know like when you take this key stream bit you

XOR it with a message bits and you will get your corresponding cipher text bit, ok.

So, the generator is now as we had seen in the picture is built from two registers; register

R and register S. Both of these registers are 160 bits long, and each state containing one

bit  and  broadly  speaking  you  can  think  of  R  as  a  linear  registered  whereas,  S  is

essentially a non-linear register. 



(Refer Slide Time: 16:29)

So, this is how the MICKEY architecture looks like and you can see that the register R

and the register S are essentially updated and you know why the input bit is shown here

as input a bit R and this the input bit S. And, there are you know two tap positions which

I am basically taking from the register R and the register S and we are XORing it to get

the key string which is XORed with your message.

Now, there is an important point in this architecture like you can see this is the input bit,

ok. So, this input bit is basically you know like mark stream depending up on this select

line which is mixing. So, this mixing as we will see right is initially kind of disabled, ok.

So, I mean rather you know like you basically initially you would like to you know like

initially  you have to  load in  the there are  two parameters  that  you have to  load the

initialisation  vector  and the key which are done in  two specific  stages  of the of  the

stream cipher. 
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So, let us see how essentially we do that. So, first we clock, so; let us see about the

clocking of the registers R and S. So, the first thing is that we see is that how we clock

register R. So, in register R right there are as we can see the parameters are R INPUT

BIT R and the CONTROL BIT R the idea is that. So, r 0 to r 159 are the states of the

register R before clocking and after we have done the clocking right they are denoted as r

0 dash to r 159 dash; note that they are 160 bits in length.

The FEEDBACK BIT as we have seen write is calculated by XORing of r 159 with this

input bit R signal, ok. So, that means, right you are either toggling r 159 or you are

basically passing r 159 as it is and then this is the evolution of the of the shift register. As

you can see that from 1 to 59 I am just shifting, ok. And, and then what we do is we

basically calculate the value of r i dash again you know like you basically take in the

FEEDBACK BIT and you XOR it  with the corresponding r i dash values and if the

CONTROL BIT R is 1, then you basically XOR r i dash with r i you know r i dash with r

i and you get the value of r i dash. 
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So,  likewise  right  you  can  also  you  know  like  you  can  go  into  the  specifics,  but

essentially  there  is  another  way  in  which  you  are  clocking  register  S.  So,  you  are

basically independent clockings of register R and clockings of register S the point one

point which you can probably see what here is that there is an in the in the feedback over

here there is an AND gate which has been used. This AND like the if you see like you

know like now this AND is essentially is one of the reasons why we call this register S as

a non-linear feedback shift register. 

(Refer Slide Time: 19:19)

 



So, basically you update the register R and the register S through these algorithms and

then you can you clock the overall generated in this way. So, you basically if you set

your mixing as TRUE then you basically CLOCK your R and you CLOCK your S by

you know like by this equations. So, you can see that here I take my INPUT BIT R and I

just XOR the input and I obtain it by XORing INPUT BIT with S 80 which is one of the

states which I am deriving from S.

So,  you can  see  that  it  is  very  interesting  way of  updating  the  clocks  because  now

register R is being mixed with the state of register S, and that is happening because

mixing is said to be true. On the other hand, I you can see that the clock S essentially

where your updating state is you are you know like mixing in the you know you are

basically  in  this  case  by  the  mix  the  clock  S  is  independently  processed.  So,  you

basically just take the INPUT BIT S and you initialise it to input or you basically assign

it INPUT underscore BIT to INPUT underscore BIT underscore S. 

On the other hand, right if you are setting MIXING to FALSE then register R works

independently. So, therefore, this particular XOR is not present when you are updating

say CLOCK underscore R. 

(Refer Slide Time: 20:35)

So,  now you can observe that  so,  I  say that  initially  there is  a  phase when you are

uploading the you are loading the key and your loading the initialisation vector. So, first

you load in the IV and then you load in key ok, K and then you do a pre clock session.



(Refer Slide Time: 20:49)

And, then after that you start your key stream generation, ok. So, you can see that in all

the states right mixing has been set to true which means since mixing is true the clock

register R is updated by this equation. And, finally, right when you are you know like

generating the key stream at that point MIXING is set to FALSE. And therefore, you are

just using this to generate the you know you are just using it to generate your key stream

which you are XORing with the message to get the get the cipher text bits. 

(Refer Slide Time: 21:21)



So,  therefore,  here is  so,  so that  is  the  more  or  less  you know like  working of  the

MICKEY stream cipher. And, the MICKEY was essentially very popular in particular

when we discuss about hardware design. So, you can see here this  the result  or the

footprint of hardware implementation on MICKEY compared to some other potential

candidates like Trivium and so on and you can see that MICKEY essentially stands out

by taking quite small amount of area in terms of resources. 

(Refer Slide Time: 21:49)

But, as we can see right that as in most algorithms or most cryptographic algorithms it

also use vulnerable  against  power attacks,  ok.  So,  in  order  to  see  that  we basically

observe  as  in  the  first  state  we  basically  put  in  our  setup  for  doing  power  trace

acquisition and here you can see how the power trace of MICKEY looks like. So, they

are the various samples that has been observed and this is a power consumption you can

see there is a distinct nature of the power traces and that is expected from the you know

like the evolution of the stream cipher. So, this has been acquired on a SASEBO G-II

board, ok.
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And, in the second step we basically try to develop the attacks. So, as very important,

right; I mean in DPA as we have seen in even in the context of block ciphers you need to

make  a  target  position,  ok.  So,  the  basic  idea  is  that  you  basically  built  the  your

hypothetical power consumption matrix by a power models. So, this could be hamming

weight or hamming distance power model and the basic idea is to look for intermediate

values which can reflect the power consumptions effectively, and then you choose a

proper power model. 

So, what we do in our case is basically we target the register R and the register S, and we

try to find out the kind of the summation of the register R content and the register S

content and we find out the hamming weight of that essentially as your power model.

So, then we attack. So, when do we attack? So, as we have seen that in the stream cipher

there are different fields of the stream cipher. In particular we basically target the phase

where we are uploading the key, as you can see that the key bits are uploaded one by one

and we basically do that. 

So, we basically keep the key fixed and we kind of vary the initialisation vector and that

is and we specifically target the content of the register R and the register S to derive a

hypothetical power and then we kind of match this hypothetical power or co relate this

hypothetical power with the real power which has been observed by our observations,

ok. 



So, that is from your side channel acquisition. So, and that that is done that is done in the

third step where we basically you know like try to co-relate and we basically apply like

co-relation  power  analysis  and  we  recover  the  key  bit  by  bit  ok;  that  means,  you

basically you know like load the key bit the key bit can be one you basically guess the

key bit the. The key bit can be 1, can be 0 and then you do a CP attack and try to kind of

confirm whether your guess was correct or whether your guess was wrong, ok.

The idea is that if your guess was correct if your key bit was correctly guessed then

right, the hypothetical power; that means, the content of the register R and the content of

the register S will co-relate very highly with the actual observed power. Whereas if your

guess  was  wrong;  that  means,  if  your  key  bit  was  wrongly  guessed  then  you  are

correlation will be small. And therefore, you can distinguish between these two cases to

discard the wrong guesses and correctly know the key in a bit by bit fashion. 

(Refer Slide Time: 24:43)

So, here are some experimental results that you can observe like this for example, when

the key bit 16 is being tried to be recovered understand that when you are trying to

recover key bit 16 that I am assuming that from key bit 0 to key bit 15 has already been

recovered, and I am just guessing the key bit 16 I am making a guess either 0 or 1. In

this case, right the correct bit is 0 and it is shown in blue and you can see that blue is

below, ok.



So, one of the reasons right I take the one which is below is because you know I will get

a negative dip in my power consumption, and therefore, I basically observe the negative

correlation, ok. But, something which co-relates more in the negative direction in this

particular graph 0 is at this point. So, you can find out 0 essentially this is this line, ok.

So, 0 is this line; that means, right I observed that since 0 is this line the blue line that is

the that is a one which corresponds to the correct key bit essentially is correlating more

compared to the red lines which are essentially are more at the top, and therefore, right

we basically can correct to determine that the correct bit is 0.

You can do similar analysis at different positions. For example, this is again when we

have increased  the number of  power traces.  So,  in  the previous  case the  number of

power traces was 100, here the number of power traces is made to be 500 and here you

can see peaks  in  the negative  direction  are even more and they are therefore,  more

distinguishable from the wrong guess. 

(Refer Slide Time: 26:11)

You can so, this is an example again when we are increasing further the number of

phases you can see that the negative direction correlations are increasing further and

therefore, they are more distinguishable, ok.
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So, you can similarly target at other key bit positions. So, this is a scenario when key bit

14 is being targeted. So, in this case 0 till 13 are already been recovered and I am just

guessing key bit 14 and you can observe that again there is a similar you know like

distinction  which  is  being  done  and  you  can  observe  that  there  is  an  amount  of

separation  which  you  get  with  100  power  traces,  ok.  But,  here  it  is  not  so,

distinguishable as you can observe right because the red and the blue are kind of quite

inter bind, ok.

(Refer Slide Time: 26:53)



So, now what happens is when I am increasing number of power traces in this case I see

the separation is quite nice, ok. So, you can see that these are the; so, in this case the

correct key bit is shown by the red colour and you can see that there is a more negative

correlation right which is what we are expecting here and therefore, you can we can

correctly say that the correct bit in this case is one ok. So, in so, this is shown in in red

colour here.

(Refer Slide Time: 27:19)

If you are taking 1000 traces the separation is even more, ok.

(Refer Slide Time: 27:21)



So, we can make some remarks about the attack is that in our experimental setup higher

power consumption corresponds to a dip in the negative direction, and that can happen

in your set up. So, depending upon that, you have to look for co-relations either in the

positive  direction  or  the  negative  direction.  So,  therefore,  in  our  case  we  look  for

negative peaks to predict the correct key bit value. The nature of the correlation plot

varies from bit to bit, ok.

In some cases only 500 traces are quite good enough. In the some cases right we find out

that we need more. And, in what we found out is that around 1000 traces are found to be

sufficient to get the complete retrieval of I mean to get the retrieval done or to get the

retrieval be successful in all the possible bit positions. 

(Refer Slide Time: 28:05)

So, here are some references which we are followed from the book, ok; I mean which

we have followed for this discussion. In particular right this reference 3, is the paper that

I  referred  when  I  was  talking  about  the  linear  feedback  shift  register,  that  is  the

Fibonacci  LFSR  in  particular.  Whereas,  there  are  some  other  references  which

essentially  talks  about  power  attacks  on  stream  ciphers.  For  example,  this  second

reference is on a power and it is attack in hardware implementations of the stream cipher

MICKEY which we kind of read it and exhibited here, ok.
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So, therefore, I like to conclude what we discussed is that LFSRs are vulnerable to DPA.

In  particular  Fibonacci  and Galois  LFSRs are  not  equivalent  with  respect  to  power

attacks vulnerabilities although theoretically they are isomorphic to each other, but they

are not so when it when we consider power attacks and we found out that the Galois

LFSRs are more vulnerable to DPA. Because, there has more separations right there are

more levels of jumps which are possible in the Galois LFSR and therefore, they are

more vulnerable to a power attack. 

In particular we also discussed that DPA can be adopted and then applied iteratively to

retrieve the key bits of stream ciphers we showed in by an example of MICKEY, but

pretty much this idea could be extended to others stream ciphers like grain, Trivium and

so on ok. 

So, with that we would like to come to an end to this class and thank you for your

attention.


