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So, welcome to this class on Hardware Security. So, today we shall be trying to see how

power attacks can be applied on knew on a primitive which is called as stream ciphers. 

(Refer Slide Time: 00:27)

So,  in  particular  today shall  be we shall  be talking  about  stream ciphers  and a very

important component in stream ciphers which are called as LFSRS or Linear Feedback

Shift Registers we shall discuss about like the types of LFSRS which are broadly 2. And

then discuss about the power attack vulnerabilities of LFSRS. We shall be then talking

about MICKEY which is a standard stream cipher and shall be discussing about the DP

attack  on  MICKEY  or  power  attack  being  performed  on  the  stream  cipher  called

MICKEY.



(Refer Slide Time: 01:01)

So, to introduce stream ciphers like block ciphers stream ciphers are also symmetric key

ciphers,  where  the  plaintext  digits  or  bits  in  general  are  combined  with  the

pseudorandom stream generator or a pseudorandom key generator which are also called

as the key steam generators. 

So, in a stream cipher the idea is that each plaintext digit is encrypted one at a time, with

the corresponding digit of the key stream to give rise to a digit of the ciphertext. So,

typically these when we say that they are you know like processed in digits what we

mean is they can be bitwise processed or they can be processed in words as well. 

So, they can be also you know like maybe processed in bytes or it may be in words. So,

often the reason is because we want to increase the amount of throughput that we get out

of the stream cipher. So, a stream cipher typically is a very fast primitive and has it has

got also a lower hardware complexity compared to say block ciphers and therefore, it

finds  wide  range of  applications.  For  example,  the  GSM, mobile  phones  use  A 5 1

encryptions and therefore, its very very popular primitive. 



(Refer Slide Time: 02:21)

If you are interested right to know more about stream ciphers, then I would ask you to

kind of look into this YouTube clip where you can find more details about the stream

ciphers. So, then what are linear feedback shift registers which are you know like. So, l

the  idea  is  that  the  LFSR or  Linear  Feedback  Shift  Registers  are  a  very  important

component of stream ciphers. 

So, just to see how an LFSR works; an LFSR right as a name suggests is basically a shift

cipher which when clocked advances the signal through the registers from 1 bit to the

next  most  significant  bit;  that  means,  as  you  can  see  in  this  diagram,  when  I  am

essentially clocking it then you will find that this essentially shifts like this bit sequence

shifts to the right for example, in this diagram. 

But then right we need to find out what is the bit that I will feedback that because when

the bits are going to the right, then I am getting the output from the right inside this is my

key stream which is being generated which will be probably XORed with the message to

give you the cipher ok. So, now, the question is right what how do you calculate the

input bit? For example, what I mean to say is that this is a feedback; this is the feedback

this is the feedback that we would like to we would like to we would like to obtain. So,

this is the feedback that you are essentially that we need to calculate and this is output

that is generated by these pre stream generator. 



 Often in you will find that this output right is XORed exclusive or with a message to

give rise to what is called as a cipher or the cipher text. So, this part is called you know

like is a very important component of the stream cipher often of course, the composition

is not so, simple as this and may be more involved as you will see in when we discuss

about the MICKEY. 

So, now, the LFSR essentially right one of the most important things is how do you

calculate  this  feedback for  the LFSR. And as  you can  see here this  is  my feedback

generation circuit for example, there are some XORs that has been used and the reason

like the feedback only users XORs this essentially is the reason why it is called as LFSR

or a linear feedback shift register because it has got only XORs which are linear gates. 

So, therefore, right I mean the idea is that we would like basically you know like tap out

few points from the LFSR states. So, this is your linear feedback shift registers state. So,

from this LFSR right we basically tap out few points for example, as shown by the blue

or the shaded portions. And then you do an operation which is defined by this feedback

circuit and you create this feedback bit which is basically being fed that into the LFSR.

For example, we are doing an XORed between 1 0 and 1. So, 1 0 0 and 1 and therefore,

you get 0. So, therefore, we are feeding back 0 into the LFSR whereas, the other bits are

basically just shifted to the right. So, that is the broad philosophy behind how an LFSR

works. 

(Refer Slide Time: 05:17)



So, now, idea is that LFSRs can be applied for stream ciphers and therefore, it is an

important object to study when we are discussing or considering you know like how

stream ciphers stand against power analysis or DP analysis. So, in this paper and this is

an reference that you can see, which was published in INDOCRYPT 2007 you can see a

paper which talks about LFSR based stream ciphers are vulnerable to power attacks. 

So, you can look into this and see the there is a claim which we kind of discuss here

which is that the which is essentially that the fact that LFSRS are susceptible to power

based  side  channel  attacks  therefore,  one  can  perform  a  power  based  attack  on

LFSRS.So, in particular the claim says that an n bit can be completely determined by

making O n power measurement. So, if you make order n that is linear amount of power

measurements, then you should be able to completely reconstruct the LFSR meaning the

feedback polynomial which is often essentially a primitive polynomial can be completely

calculated and in fact, you know like you can also calculate the number of bits which are

there in the LFSR ok. So, you can calculate the number of stages which is essentially

denoted by small n which essentially; that means, right you can totally deconstruct the

LFSR. 

(Refer Slide Time: 06:43)

So, let us consider an of an example to understand this ok. So, here is an LFSR which

has got 4 stages as you can see like stage 0 stage 1 stage 2 and stage 3 and the feedback

in this case is just determined by this exclusive or. So, which basically kind of steps in



stage 3 and XORed XORs with this bit to give back my feedback bit. So, you can see

that this is the corresponding feedback bit that I obtain right the feedback bit is again

here and that is basically obtained by this exclusive or so, this is my you know you know

like feedback circuit in this case. And the polynomial is being has been described as 1

plus D plus D to the power of 4. 

So, that basically essentially sets you the polynomial. So, the idea is you know like if for

example, if there is a new polynomial that you want to read the typically write this is

how we read it. So, the D to the power of 4 is basically the maximum bit or you know

like since this is a 4 bit LFSR, you can imagine that the bit sequences will be which will

be generate by this LFSR can be enumerated from by 4 bit. So, it can be enumerated by

like 4 bits, depending upon the values of D 3 D 2 D 1 and D 0. So, pretty much you can

say that these elements are members of GF 2 to the power of 4. 

So,  now, as you know that  for  GF 2 to  the power 4 right  you can essentially  set  a

corresponding polynomial say you know like for example, if I said 1 plus D plus D to the

power of 4, then you can essentially obtain the elements of this field and in particular this

feedback polynomial is you know written as 1 plus D to D plus D 2 the power of 4 that is

because of this position. So, therefore, the stands for 1 position, this position stands for D

and gradually so and so. 

So, basically right you basically can you know it depending upon the tap position the

degree of the polynomial will get changed. So, in this case it is we basically get 1 plus D

plus; 1 plus D plus D to the power of 4 which basically is the corresponding which

basically tells me how the feedback circuit works. So, now, with this background let us

see how the evolution of this LFSR works, when we are basically applying clocks to this

linear feedback shift register. 



(Refer Slide Time: 09:09)

So, let us take this table. So, therefore, here is a you know like we basically loaded of

course, one thing is to be kept in mind that when you are considering an LFSR like this

and if you load all 0 values, then the value remain stuck at 0. So, therefore, we will be

considering non zero initial states for example, if I load it like 0 1 1 0. So, this is an you

know like a non zero initialization which I do to this polynomial into to this LFSR. 

So, this LFSR because of the choice of the feedback polynomial, which is 1 plus D plus

D to the power of 4 stands out to be something which is called as a maximum length

LFSR which means it basically generates a cycle length which is proportional to 15 ok.

Remember  that  the 4 0 state  is  not a  part  of the cycle  because we are not giving it

because its a self-loop ok.

 Whereas,  right  if  you fill  in like 1 plus D plus D to the power of 4 is  a feedback

polynomial, then all the 15 non zero steps will lie in a cycle and that is the maximal

length cycle which is possible and that is by this LFSR is also called as a maximal length

LFSR. So, now, if I for example, initialize its a at 0 1 1 and 0, then you can see that I can

calculate the corresponding you know like the feedback because you can observe that D

3 D 2 D 1 and D 0 are the corresponding states and therefore, when I am XORing then I

am XORing this position with this D 0 position. So, basically I am XORing D 3 and D 0

to get back my feedback value ok.



So, in this case for example, if you know like D 3 and D 0 r 0. So, therefore, I XORed,

them and I get 0 as a feedback. So, therefore,  next time you can see that 0 is being

feedback for example. So, what I mean is that when I am feeding when I am XORing D

3 and D 0 I am getting back this feedback value. So, therefore, if I XORed 0 with 0 I get

back 0 if I XORed 0 with 1 then I get 1 as a feedback ok. So, you can see that here 0 has

been feedback here 1 has been feedbacks likewise right if I XOR D 1 with this 1 I get

this 0 which is being feedback whereas, for the other positions it just shift. So, you can

see that these are nothing, but essentially shifting of these values ok.

So, therefore, right if you do this then you can see that if I start with 0 1 1 0 and then you

like proceed like this, then I these are the corresponding states that will essentially you

like  immerge  one  after  the  other  and now we basically  defined  2  variable.  So,  one

variable is denoted as HD t and the other variable is denoted as PD t. So, what are the

definitions of HD t and PD t? So, in HD t we basically calculate the hamming distance

between these 2 states. So, you can see that these are the successive states and I calculate

the hamming distance between them.

So, for example, what I mean is that, if one of these states here for example. So, this state

suppose I denoted as ST t suppose I denote it as ST t and it migrates to ST t plus 1 and in

the next clock cycle it goes to say ST t plus 2 then HD t stands for the hamming distance

between them. So, therefore, I can write that HD t is nothing, but you know like the; you

know like the hamming distance between. So, let me write this as a hamming distance

between the states ST t and ST t plus 1 ok. So, this the hamming distance between these

2 states ok.

So, what I mean is that if I now have got 0 1 1 1 0 here and the next state say ST t plus 1

is 0 0 1 1 then you can see that the hamming distance is nothing, but the changes for

example, here there is 1 change and here there is 1 change. So, you can actually calculate

this ah. So, see that in 1 state it is in the first clock cycle it was at 0 1 1 1 0 and these

goes to 0 0 1 and 1. So, the hamming distance can also be found out in this way. So, if I

take an exclusive or between these bits then I have got 0 XORed with 1 is 1 1 XORed

with 1 is 0 1 XORed with 0 is 1 and 0 XORed with 0 is 0. So, the hamming distance you

can say is also the hamming weight of the exclusive or between successive states.



So, therefore,  write the hamming distance in this case is 2 ok. So, that is essentially

written as 2 here likewise hamming distance between the clock cycle 1 state and the

clock cycles 2 state is also 2, but you can see that between 2 and 3 there are if I you

know XORed them I have got  1 here I  have got  1 here and I  have got 1 here.  So,

therefore, the hamming distance in this case is 3 ok.

So,  now,  I  basically  observe  the  hamming  distances  in  this  way.  So,  one  of  the

motivations  of  looking into HD t  is  because  as  we discussed right  among when we

discussing about powered models  1 of the most common powered models in CMOS

circuits are essentially what are based hamming distances. So, therefore, you can pretty

much assume that this HD t is a good approximation of the power consumption of your

device. 

So, now what we try to see is that, we basically introduced another variable say call it as

PD t and try to observes that whether the HD t changes across clock cycle. So, you can

imagine  that  you like  if  you have  basically  the  HD t  is  an  indication  of  the  power

consumption. So, then it tells me that whether the power consumption increases across

the clock cycle or kind of remains the same or diminishes across the clock cycle, because

in some cases the power can also diminish as we can see that here the HD t is 1. 

So, therefore, it means that what we are trying to see over here when we are seeing PD t

is basically trying to see whether the power consumption kind of remain same or whether

it becomes or whether it increases or whether it decreases. 

So, the reason. So, what we plot PD t is just the fact you know like. So, we say the PD t

is 0 if the power consumption remains the same and PD t is 1 if the power consumption

changes;  that  means,  right  basically  compared  2  successive  HD  t  values,  if  the  2

successive HD t values are remaining same then we indicate that by PD t 0 and if they

differ then we indicate it by PD t 1. 

So, therefore, right you can see that since 2 and 2 are same I indicate as 0, 2 and 3 are

different I indicate as 1, 3 and 2 are different I indicate as 1 2 and 2 are same I indicate as

0 2 and 2 are again you know like same. So, I indicate as 0 2 and 1 are different I

indicate as 1 1 and 1 are so, I indicate it by 0. So, like this I continue because there will

be more states in this evolution until you get back to this 0th state ok.



So, therefore, now we observe a very interest observation. The interesting observation is

this that if you observes PD t, then this PD t right gives you a binary sequence I shown

here.  This turns out to be nothing, but a delayed sequence of one of these states for

example; in this case it kind of pretty much exactly matches with the D 0 state ok. So,

you can see that here I get 0 1 1 1 0 0, but I here I get for example, for D 0 it is 0 1 1 0 0

and so on which exactly matches with PD t ok.

 So; that means, what is the implication of this? The implication is that if I have got a

good power measurement, then I can you know like get an idea about HD t based upon

the power model and therefore, right if I get to know about HD t and then try to find out

a PD t which basically a 0 1 decision to know that whether the power is increasing I

mean whether the power is changing or whether the power is remaining constant across

clock cycles, then I get 1 of the states of the LFSR. 

So, now, if you get the states of the LFSR ok. So, then you basically have you know like

we will see very soon that you can actually reconstruct the entire LFSR. So, now, you

can probably  argue  with  me that  you know like  I  already  have  access  to  D 3  right

because D 3 is the output of or maybe D 0 is the output of my key stream generator. So,

what I am trying to say is this that is, you know like if I basically you know see these

diagram then D 0 is output which I am providing. 

But  note  that  the  attacker  may  not  always  have  access  to  D 0,  because  this  maybe

emerged in a big circuit it maybe emerged into stream cipher or this you know this point

is not is not accessible to the adversary ok. But here what we observe is that from the

power measurements and from this estimate of the PD t vector, you basically know the

values of D 0 ok. And if you know the values of D 0 then you can essentially reconstruct

the entire LFSR ok.



(Refer Slide Time: 18:01)

So, now, what, so, this is a continuation of this evolution as I said that you basically got

in 15 and you can see that 15 is nothing, but 0 1 1 1 0 which means after this the cycle

repeats ok. Again you can see that this 0 0 4 ones exactly matches with D 0. So, you can

essentially prove as well, you can also go to the reference that I mentioned and see the

complete  proof  where  we essentially  can  argue  that  the  spirit  is  indeed  the  delayed

sequence of this LFSR states. (Refer Slide Time: 18:31)

So, now what we do is, we basically apply a result which is essentially called as the

Berlekamp Massey Algorithm. So, this description of the Berlekamp Massey Algorithm

kind of summarizes the power of these algorithm. We will  not go into details  of the



algorithm,  but  you  essentially  can  you  like  at  this  point  just  concentrate  on  the

implication of this algorithm. 

So, the algorithm says that it  basically  defined something which is called as a linear

complexity  of  an  infinite  binary  sequence.  So,  which  essentially  is  defined by L or

denoted  by L s  and is  defined as  follows.  So,  the  idea  is  that  if  s  is  a  0  sequence

something like s equal to 0 0 0 and so on then you can immediately then we define L s to

be 0 ok.

 On the other hand if no LFS are generate s then I say L s to be infinity which means that

no linear no finite linear feedback shift register can generate the sequence ok. On the

other hand right if it is otherwise; that means, if we have got if it is possible to generate

the sequence then L s stands for the length of the shortest or the minimal length LFSR

that can generate this s ok. For example, in our case the sequence that we saw essentially

was  generated  by  a  4  bit  LFSR ok;  that  means,  like  you  somebody  gives  you  this

sequence the 0 0 1 1 0 0 0 0 1 0 0 followed by 0 four 1s and 0 1 0 1 0. 

Then this sequence can be generated by an LFSR whose length is 4 and therefore our lf L

s is 4 because is the minimal length LFSR of length 4 which can actually generate the

sequence.  So,  therefore,  right  I  mean  the  idea  is  that  if  t  is  a  finite  sequence  or

subsequence of s of length at least 2 L s ok. So; that means, if I give you a sequence of

length at least 2 L s, then the Berlekamp Massey algorithm on input of this t that is on

input subsequence can completely generate this LFSR of length L s, which essentially is

can be used to generate s ok. So that means, you will as an attacker I you just needs an

exposure to 2 L s amount of data to completely reconstruct the LFSR. 

 So, that means, in our case if is 4 then you just need a subsequence of length 8 and that

should be enough for you to solve the entire  equation the equation sets  and kind of

reconstruct the LFSR which means you.
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So,  these  are  very  strong  algorithm  and  if  you  are  interested  to  know  more  about

Berlekamp Massey algorithm explain you can go through this YouTube clip, which you

can  which  can  basically  give  you  an  explains  the  working  principle  of  Berlekamp

Massey algorithm.  (Refer  Time:  21:28)  this  course we will  be  using  this  Berlekamp

Massey algorithm as a black box and the this how you can engage it. So, what I do in this

attack is now I basically measure the power of the dynamic power at t equal to 0 and

then for all the subsequent time instances I measure the dynamic power. 

The idea is that if the power of 1 time instance is not equal to the previous time instance,

then I define this PD t dash variable and make it 1 ok. On the other hand right if this is 0

this that implicates that the power consumption does not change across the clock cycles.

So, now, I basically take this PD t dash and I as I said that based on the; based on the

theory that the PD t dash is nothing, but a delayed sequence of one of the states of the

states of the LFSR, then I just we will try to fill it to Berlekamp Massey algorithm ok. 

Now the Massey at some point right the Berlekamp Massey algorithm will terminate and

then I exit which means like I have been able to you know like give enough amount of

data to the Berlekamp Massey algorithm. So, it can reconstruct the l the LFSR ok.



(Refer Slide Time: 22:29)

So, therefore, the result says there are Berlekamp Massey algorithm outputs the length of

the LFSR and also the feedback polynomial F and also the connection polynomial which

is realized by F. And the initial state can be ascertained by solving a system of linear

equations  from  the  previous  knowledge.  Once  you  know  the  LFSR  structure  then

guessing the input state is just solving a few solving a system of linear equations. 

(Refer Slide Time: 22:57)

So, therefore, we can you know like try to kind of reflect on this points a little bit further,

based on the fact that there are 2 types of linear feedback shift registers. So, one is one is



what we have just sees is what is called as a Fibonacci LFSR and there is another class of

LFSR it is called as the Galois LFSR. So, theoretically both of these are isomorphic

which  means  both  these  LFSR  configurations  with  the  same  feedback  connection

polynomials produce the same output stream, but with time offsets ok.

So, now, you know like although from the cryptographic point of view both of these

LFSRs are equivalent and you can use one instead of the other, the question is whether

they are also equivalent with respect to power attacks ok.

(Refer Slide Time: 23:43)

So,  just  to  kind of  revise these how a Fibonacci  LFSR looks like and these are  not

general description of as we have seen like here you have got the n states of the LFSR.

So, these denoted from you know like if I just write down right this is basically the S 0

state this is the S 1 state and so on the S n minus 2 states this is the S n minus 1 state. 

And then what we do is basically, we try to kind of observe the feedback polynomial. So,

the feedback polynomial is nothing, but as we have seen right is an XORed is best based

on  XORed.  So,  therefore,  the  only  gates  which  are  here  are  XORed,  but  then  you

basically take you basically tap out few positions and these are called as taps and then

you calculate this the output of the circuit and you feed it back. So, this is your feedback.

So, this particular configuration is what is called as the Fibonacci style of LFSRS and us

this is oppose to what is called as the Galois LFSR ok.



(Refer Slide Time: 24:43)

In the Galois LFSR you do this. So, you have again this n states as you can see like from

S 0 to Sn minus 1, but now the feedback is done in a slightly different way ok. So, you

can see that what we do here is that the feedback is now kind of put across every you

know like at every stage for example, this is 1 stage you like this is another stage and so,

on ok. So, these are all the different stages and you basically you know like try to find

out you basically tap out you know like these are the your tap positions that depending

upon the feedback polynomial, you end it; that means, you enable that switch or you

disable that switch.

So, basically either you allow this feedback to pass or you do not allow this feedback to

pass by using this switch. So, we call this say as the toggle switch, which means that if

the toggle is 0 then this  path is disabled,  so; that means,  you are not taping out this

position again you know, you can essentially  draw an isomorphic relationship which

means that for every Fibonacci LFSR you can write a Galois LFSR and also for every

Galois LFSR you can write a feedback you know like Fibonacci LFSR.

 Also note that in this diagram and also in the previous diagram, we basically define what

is something is called as a non-linear Boolean function. So, typically what is done is you

know like based upon this gates in this bits that essentially are over here, we basically

combined them by a non-linear feedback non-linear Boolean function and then produce

this key stream which is XORed with the plaintext to give you the Ciphertext. 



So, this is the kind of model that we compare with and the question is right that the

question that we try to address in this discussion is whether these 2 things are equivalent

ok.

(Refer Slide Time: 26:27)

So; that means, we basically try to basically consider that whether Fibonacci LFSR and

the Galois LFSR are equivalent with respect to power attacks. So, this we will see in the

next class.

Thank you.


