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So,  welcome  to  this  class  on  Hardware  Security.  So,  we  shall  be  continuing  our

discussions on power attacks. 
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In particular in today’s talk, we shall be try to look into various metrics which are often

useful for evaluating and giving a quantitative evaluation of side channel attacks. We

shall be looking to CPA on real traces of AES 128 like in the last classes, we discussed

about doing power attacks on simulated power traces. So, we shall be looking into some

of the examples on real trace attacks. We shall be defining signal to noise ratio or SNR of

power traces and we shall be using it as a guideline to we compare DPA on iterative

architectures compared with C L architectures and a special scheme which is called as

shuffled schemes. 
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So, to begin with, there are different metrics for side channel attacks and metrics are very

useful because they provide us a quantitative framework to compare between the success

rate of two side channel attacks. It can also be useful for kind of understanding whether a

countdown measured is strong enough to protect against a side channel attack. So, two of

the  most;  two  of  the  most  useful  metrics  are  success  rate  of  a  side  channel  attack

adversary and the second one is called as guessing entropy of an adversary. So, we shall

be trying to define these two metrics in today’s class.
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 So, to begin with, what is a success rate of an adversary? So, side channel attack as we

have seen works by a divide and conquer strategy where the key space is divided into

several equivalent classes like what we normally try to do in this attack is, we try to

understand whether a key belongs to a specific class. So, this class could be for example,

a hamming weight class or a hamming distance class. So, we try to take a key we for

example, have a big key space and we try to map that key from which is a member of

that key space into a partition or into an equivalence class. 

For example, we say for we may we might say depending upon hamming weight, if you

are using hamming weight as a power model or a leakage model, then we take a key and

we try to map that into a given hamming class ok. So, suppose you are using 8 bits then

the hamming class could be 0, 1, 2, 3 4 so, until 8. So, we know that depending upon the

partition for example, like if the hamming class is like 1 right then there could be a if I

am considering the byte in the state matrix, then there could be 8 possible values.

Like the key could be 1 0 0 0 0 and so on or 0 1 so on and then again followed by 0s and

or it could be like this till like 0 fall like contiguous 0s followed by 1 ok. So, therefore,

right the attack normally does not distinguish between keys which belong to the same

class or partition, we can formalize if it. So, suppose I want to formalize this notion, I

want to formalize this notion of an adversary, then let us use this variable E K where K is

the key space and E K essentially stands or denotes the cryptographic implementation.

So, it  is for example,  it  is an AES algorithm which has been implemented.  Now the

adversary assumes a leakage model  and let  the leakage model be denoted as L. The

leakage  model  provide  some  information  about  the  key  or  some  other  desirable

information. For example, it could be as I said the hamming weight of the key. Now, the

adversary  is  often  modeled  as  an  efficient  algorithm.  So,  it  is  often  modeled  as  an

efficient polynomial time algorithm which is denoted by A E K L and it is bounded by its

time complexity tau memory complexity m and q queries.

Which means like it requires a time, I mean the adversary in order to essentially return an

equivalent of the key or the equivalence partition for the key it requires time which is

proportional to tau or denoted by tau and the memory complexity is bounded by m and it

can make q queries. So, it is important to keep in mind that the adversary needs to be an



efficient  algorithm. So, we are not considering against  unbounded adversaries  in this

case; we are considering computationally bounded adversaries. 
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So, if you take such an adversary and imagine that the leakage, so, the adversary in this

case as we know is the side channel adversary. So, it not only sees the input and the

output of an algorithm, but it also tries to exploit the leakage of an encryption algorithm

or  encryption  implementation  rather. And what  it  does  is  that,  it  maps a  key which

belongs  to  the  big  key space  K to  a  set  within  which  it  cannot  distinguish.  So,  for

example, it can say that it belongs to hamming class say 4, but within 4 there could be

several possible keys whose hamming weights are 4 and it may not be able to distinguish

between them or among them.

 So, we define these partitions by a notation S and the mapping from the space key or

from the space K to the space S is denoted by a function, then function is called gamma.

So, we say that let me from this key space choose K and then apply this function gamma

and then I get a small s. So, small s is a essentially nothing but the mapping. So, typically

of course, right as you can see that if I am considering say 128 bit space there are 2 to the

power of 128 possibilities and if I map them into the hamming classes, there are 129

possible hamming classes.

So, 0, 1, 2, so until 128, so typically as we can see that the number of partitions or the

number of hamming classes for example, is much smaller compared to the total number



of keys. Like in the keys, we have got 2 to the power of 128 which is very large which

we can which we are basically narrowing down to only 129 possibilities. So, therefore,

the cardinality of S is typically much smaller than the cardinality of K and that is why

our attack will be successful in that case and objective of the attack is to determine the

classes  to  which  your  target  K  belongs  with  non-negligible  probability,  that  is  our

objective.

 So, as an analogy, I said we can consider the hamming weight class which divides the

key  space  into  equivalence  classes  or  partition.  So,  hamming  weight  or  hamming

distance could be used as an analogy to understand this experiment.
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So, let us see what do we do in this experiment. So, what we do here is suppose you

know  like  if  you  are;  if  you  are  considering;  if  you  are  considering  right  here  an

adversary, then the adversary based upon the ciphertext because, the ciphertext is already

there with the adversary because is a black box information and the adversary has an

additional side channel leakage information.

 So, now, together with this the adversary comes up with a guess vector say, we denote it

by g which is nothing but the key classes which are sorted in terms of descending order

of being likely a candidate. For example, like it may happen that the guessing vector, if I

consider  the  analogy  of  hamming  weight  class  will  tell  me  that  essentially  the  key

belongs to a guessing vector which is denoted as say 1, 2, 3; that means, like it could be



either hamming weight class 1 or it could be hamming weight 2 or it could be hamming

weight 3. But the attacker is saying that probably 1 is most likely ok. So, that is exactly

what is meant by this guessing vector. 

 So, therefore, the guessing vector typically is again we define this an order o adversary

if the guessing vector will come up with o such candidate classes. So, it will come up

with vector g 1, g 2, so until g o. And of course, you can understand that o will be lesser

than the number of part possible partitions. It will lesser than in you know and if I talking

about a 128 bit state, then and if I am consider about considering 128 as the maximum

hamming weight possible, then there are 129 hamming classes.

 Then, o would be lesser than 129, because 129 is essentially the all possible cases. So,

now, the adversary returns is guessing vector g ok. And the attack is said to be successful

if the key class; that means, suppose you know like if I take the correct key K and if I

map it to S belongs to this guessing vector, if it belongs to this guessing vector, then the

attack is successful else the attack is a failure. 
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So, exactly there is modeled by this algorithm. It says that I take an input which is K L

and E K. E K stands again for the encryption implementation, L stands for leakage, K

stands for the possible key space and the output is 0 or 1.



Which means either the experiment is successful or the experiment is a failure. So, if you

take any member of this key space say denote it by small k and if I map this k to s; that

means, s is my correct key class and the attack or the adversary who is bounded by you

know like tau m and q as I said that it is a polynomial timely bounded adversary which

can make at maximum q queries can make a memory access which is bounded by n and

can run means it is runtime is bounded by tau. So, then it basically returns a guessing

vector which is denoted as g which is nothing but g 1 to g o.

 So now, if s does not belong to g; that means, if this key class does not belong to g, then

it returns 0 which means the attack is a failure. And if it belongs to g, then the attack is

successful, so, it returns 1. So, the success rate essentially can be defined as nothing but

the probability that this experiment returns a 1. If it returns a 1, then it means like that s

belongs to g and therefore, right the adversary which is an o as I defined is to an o order

adversary is successful. That means, if it can give o possible members of it is guessing

vector, then it is guaranteed or it has got you know like I would rather say it has got a

high probability that the correct key class will belong to this guessing vector ok.

This probability has to be more in order I mean ideally should be 1. So, therefore, right

the correct key class belongs in the guessing vector if the attack is success. So, now, note

that in this experiment right we always have a remaining work load which is defined by

o. So, this maybe sometimes an inflexible definition because we are not really you know

like kind of giving a metric or giving a quantification on the remaining work load and

here exactly the definition of guessing entropy comes into play.
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 So, therefore, right this is other definition that is of importance which is called as a

guessing entropy of an adversary. So, the above metric for an oth order attack implies the

success rate for an attack where the remaining load is o key classes because it comes up

with the result that the guessing vector belongs to o key classes and the correct key can

be belong to any one of them right. So, therefore, the attack has a maximum of o key

classes to which the required key or required k can belong. While the above definition is

fixed with respect to the remaining work load because the remaining work load is o is

defined by o. 

We define guessing entropy to provide a more flexible definition if I want to measure

how the remaining work load reduces or diminishes with evolution or with maybe you

know like more number of observations. 
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So, if you want to measure that then we will slightly modify this experiment. So, what

we will say is that, suppose again your input is K L and E K, the output class right now

we will say it to be a key class which is defined as i or denoted as i. So, again what I do

is, I take the key which is the correct key, I map it by the gamma function to s. 

I again obtain this guessing vector which is g 1 to g o, but now I do not just say whether

the attack is successful or not rather I try to return the position in this guessing vector.

Because if I can tell the position in this guessing vector then it means that there are for

example, if it is it starts from g 1 and if g 2 is my correct key; correct key, I mean g 2 is

where you know like is equal to s, then that means, right g 1 and g 2 are both possible ok.

And that means, that the remaining work load is essentially proportional to this returned

i. And ideally, I will want that s which is my correct key candidate should be the first

member of the guessing vector.

Because  in  that  case  right,  I  mean  I  have  really  resolved  it,  there  is  no  remaining

uncertainty about the key. So, therefore, right the attack in this case the guessing entropy

is nothing but the expected value of i and that is denoted by this notation which says that

it is a expected value of the or expectation of the you know like, if I denote is i to be a

random variable like rather this i is an exact value, but if I denote capture this i by a

random variable then the expectation of that random variable is what essentially gives us

the guessing entropy of this experiment. 



So,  therefore,  this  gives  me a formal  definition  of  the adversary against  a  key class

variable  S and the  experiment  returns  the  position  of  the  candidate  key class  in  the

guessing entropy vector. So, this is an important distinction difference between the first

experiment and the second experiment. Although, they are quite closely connected there

is a there is an interesting you know like I would say complementary nature of both the

definitions. So, in one case it essentially gives you that the remaining entropy is o, so, it

does not really bother about that. If just bother about the fact that whether you can bring

the correct key class in within that o possible cases. 

And in the second experiment right, we basically try to give you the position of that key

candidate  in  the  guessing  vector  ok.  So,  therefore,  both  of  them  can  be  useful  in

analyzing the side channel attacks. 
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So, here are some experimental results. So, for example, you can see these are again you

know CPA dump on simulated power traces as we have discussed before and it is with

and without noise. So, the blue, so if you can observed eye that is a blue line and the blue

line shows like there are like several wrong keys and you can see that the ranking of the

key. So, if it is not very clearly, let me ask if any doubt.

So, it  is  basically  the ranking of the key; that  means,  the position of the key in the

guessing entropy in the guessing vector is basically plotted with the number of traces.

So, what is expect is that with an evolution with more and more traces, the guessing



entropy should get reduced to 0 because you know like it is at the beginning ok. So, it

basically  the correct  key is at  the top.  So, therefore,  what we are plotting out is the

ranking of the key and the idea is  that  as the ranking becomes you know like from

suppose it initially 10, then becomes 9 and then, gradually it becomes one. 

Then; that means, it is at the beginning right and therefore, the entropy is minimum in

that case. So, in this case, right there are several wrong keys which has been plotted the

rankings of several wrong keys and there is a small blue line which basically tells us the

guessing  entropy  of  the  correct  key.  So,  if  we  can  observe  here,  then  with  around

something like more than 40 into 200 traces, you will find that the blue line shows that

the correct key trace essentially, I mean the; I mean the ranking of the correct key goes to

0. That means it is identified.

Now, the interesting thing is that if you add noise, if you add you know like more noise

to it, then you will find that this will becomes sluggish. And therefore, you know like

what will happen is that it will take more number of traces to get down to 0 ok. And

therefore, essentially that implies that if you add more noise, then the attack becomes

difficult  and the experiment  or the attack takes more number of traces  to reduce the

guessing entropy to 0 or to essentially bring the correct key to the top of the least we or

the guessing vector or. So, that is the objective behind the experiment. 
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So, therefore, now let us see that how we can what will happen if I you know like replace

this simulated power traces with real power traces. So, when attacking real power traces

of course, right the effect of electrical and algorithmic noise will come into effect which

we have trying to kind of model with our Gaussian noise. But in real experiments there

will be more phenomena and the architecture often as you got a strong effect on the

algorithmic noise ok. So, as we will see in our discussion. It is often determine I mean, it

often determines something which is called as a SNR or the Signal to Noise Ratio which

quantifies the quality of the power traces. 

This in turn effects the success rate and the guessing entropy of the attacks ok. So, this in

turn has got a strong effect on the success rate as well as the guessing entropy of the

attacks. 
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So, what is an SNR of a power trace ok? So, consider a cipher which is like AES which

has  got  r  rounds  and  let  S  be  a  random  variable  representing  the  key  dependent

intermediate variable of E. For example, it could be the target you know like S box input

for example or the target S box output if you are doing the attack from the plaintext. 

So, S is called the target. And it satisfies often S is equal to you can denote it as S is

equal to F k star X. So, F k star X could be something like you know like that X is like is

a random variable which is representing say a part of the known plaintext or the cipher

text, we have got the correct key which is k star. And therefore, you apply them to get the



value or estimate of F k star X. Now, note that F k star also depends upon the leakage

function of the hardware device ok. So, and this is called as a deterministic portion of

leakage. Why deterministic because you can fix it by fixing the values of X as well as k

star. You can pretty much assume that this part  of the leakage remains constant over

several runs of the encryption.

 So, therefore, the therefore, you know like the, but at the same time the total leakage

will  the  something  more.  So,  therefore,  right  there  will  be  some  portion  which  is

proportional with this F k star X and that is denoted as this a F k star X where a is some

real constant to indicate the proportionality. Now, this is basically superimposed with a is

a portion which is called as N t ok. So, N t is nothing but the you know like it is basically

a Gaussian. And as we have discussed right that every time instance there is an amount

of electrical  and algorithmic noise which is coming into place and that is essentially

modeled as N t.

 So, therefore, you can simplify this and write it as a S plus N t where F k star X is

nothing but S. So, here is you know like I have as I have said that N t is some Gaussian

distribution N t which belongs to say N 0 sigma t. Of course, you can say that it is not 0,

but then if you say it is mu, then you can bring that component into a F k star x and you

can  make  the  noise  component  meaned  around  0  ok.  So,  where  is  without  loss  of

generality, we can write that the N t belongs to the normal distribution and 0 comma

sigma t. 
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So, therefore, right I mean there is a very important concept which is essentially when

we talk about distinguishers which is called as univariate and multivariate distinguishers.

So, now let us understand what is meant by these two terms. So, in the above a S say is a

deterministic part of the leakage, it can be simulated by the adversary knowing the values

of X and for each hypothesis  of the keys, like I make the you know like it  is I  am

basically guessing on a portion of the key. So, I may make a guess on the key. Like there

could be for example, as we have seeing 256 possible guesses of a part of the AES key

when we are  guessing  say the  10th round bite  for  example.  And we can essentially

simulate the distribution, you know like simulate these portion. 

So, now the time instance when the target when the target S is manipulated is called as

the interest of is called as the instance of interest. Note that you know like if you are

observing the power profile, not every time instance is when that particular you know

like if you are targeting for example, a specific state that state comes into play, there

could be other time instances when that state is not at all into; at all into the picture ok. It

is  not  participating  in  the  computation.  So,  therefore,  right  there  is  a  specific  time

instance which we called as a instance of interest. So, I denote it as t star when it is you

know like this particular state; this particular state is participating in the computation. 

Note that were most practical cases, I do not know what is t star right we do not know

what is the value of t star. So, therefore, in the most common form of DPA or in the some



of the forms of what is called as you know like which is most practical and we as we

have seen even in the context of CPA and difference of mean based DPA, an attacker

applies  a  univariate  distinguisher  at  each  time  instance.  So,  what  is  the  univariate

distinguisher? Univariate distinguisher is as we have seen the Pearson’s correlation for

example, you are applying the distinguisher on a single point in the trace.

You are applying it on a single leakage point in the trace. You are not applying it on

multiple leakage points on the trace. So, if we apply it on a single leakage point on the

trace, then you call that as a univariate distinguisher. So, what I do is therefore, at all

time instances say t 1, t 2, t 3 ans. So, on I apply this distinguisher ok. Note that, if I have

got a block cipher and block cipher is basically you know like iterating over say r rounds

and every r round there are t instances when you are basically sampling or t is a number

of samples per round, then the total value of small t can range from 0 to r T right.

Because it can basically go on from 0 to you know like more precisely 0 to r T minus 1.

So, therefore, the if the observed leakage be denoted as F k X, the attacker computes the

distinguisher vector which is denoted as D t. So, what I do is therefore, I evaluate this

distinguisher at every point on the leakage trace, every point on the leakage trace. So,

therefore, as you can see these D t comprises of the result of this univariate distinguisher

for all the possible key hypothesis, if there are 256 hypothesis, then you basically guess d

1, d 2, d 3 till, so until d to 256. 

And the and how do you get  any d k is  as simple as that  you basically  apply your

univariate distinguisher on F k X. So, F k X is the actual leakage because k is the actual

key which you do not know as an adversary and this is the part which you are modeling.

So, you are saying that ok, I know say I can simulate F k star X plus there is a Gaussian

noise that I am trying to model. So, therefore, I if I basically take; basically take this

component and if I say you know like for example, you know like correlate with F k X or

if  I  apply  any  other  distinguisher  for  that  matter  I  can  apply  any  you  know  like

distinguishing function and then I get the value of d k ok. And therefore, the final result

is based on the best among all these time instances.

So, therefore, by basically what I try to do is, I tried to kind of distinguish the correct key

from the wrong key right. So, if I know that you know like that I want basically see that

in which particular time instance, the separation between the correct key and the second



correct key is maximum and that I tried to kind of find out at all these time instances and

I find and I want to basically tell that at which time instance this separation is maximum.

And that would probably be written as my correct key I mean correct time instance or t

star. 

So, this is one approach. This is typically what is called as a univariate way of you know

like actually doing differential power attacks. 
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Now, as oppose to these right, in the multivariate approach what you can do is that the

attacker  will  use  multivariate  distinguisher  which  jointly  evaluates  the  power

consumptions at multiple time samples ok. So, therefore, you know like and this very

common in profile attacks, as we have seen the like that the DPA, we have been studying

is more in example of a non profile attack in a profile attack this is brought you more

common where you try to kind of apply this multivariate distinguisher on several points

or multiple points on the traces. 

This can be for example, very useful when suppose you are doing a computation not at

one time instance but it is spread across time instances ok. So, these are you are doing

say in a sequential manner, you are doing a computation. So, then what happens is that a

computation is basically spread across different time instances in the power trace. So, in

such scenarios, this is a more common form of doing attacks ok. However, you know

like this is we have to basically apply this in a careful manner. So, if you basically the



objective of applying a multivariate distinguisher is actually to amplify your signal or

you know like we reduce the noise component. 

But at the same point, you know like this technique could be vulnerable to a decrease in

success rate due to some points in the trace having less signal which were trying to

combine with the high SNR points. So, why is it kind of more common template attacks?

Because, in template attacks when you are doing a profiling at that point, you know the

key because you have full control on the device ok. And therefore, you can estimate the

SNR properly and therefore, you can suitably you know like combine those points.

 Whereas, in a non profile setting, you do not know the key and therefore, right there is a

chance that if you are arbitrary applying this technique, then it may lead to you know like

an overall degradation of the SNR. So, hence when high SNR points in the trace are

combined with low SNR points, this could lead to a decrease in the overall success rate

and therefore, right we have to carefully apply this technique. 
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So, this essentially brings us to something is called as a definition of SNR and that is the

very vital definition we will take up that in the next class so.

Thank you for your attention.


