
Hardware Security
Prof. Debdeep Mukhopadhyay

Department of Computer Science and Engineering
Indian Institute of Technology, Kharagpur

Lecture – 30
Power Analysis – VI

So, welcome to this class on Hardware security. So, we shall continue our discussions on

power attacks and Power Analysis.

(Refer Slide Time: 00:23)

So, we were discussing in the last class on difference of mean attacks. So, we shall be

discussing about how to implement different difference of mean technique on simulated

tracing traces. We shall be discussing about a new technique next about which is called

as Correlation Power Attacks or CPA and we shall also be discussing about how to

implement CPA’s on CPA on simulated traces.

(Refer Slide Time: 00:45)

So, this is a brief recapitulation of what we already discussed. So, essentially how

difference of mean works is essentially the basic principle of its basically based on the

principle that in DoM right, we try to kind of exploit the fact that power consumption of

a device is correlated to a target bit or set of bits and the attacker essentially obtains a

large number of power consumption curves and corresponding cipher text, it can also be

done from the plain texts.

But suppose it is done from the cipher text which is probably more I would say intuitive

and then that, attacker basically applies a divide and conquer strategy. So, he assumes a

portion of the key which is required to perform the decryption for a portion of the cipher

of 1 round say the last round for example,. So, he basically guesses a part of he basically

sees the cipher text cases are a part of the key and does say 1 round of decryption and

then, based upon the guessed key, he computes a target bit. So, typically this is after

computing an inverse S-box.

Like suppose, I want to calculate the input of the last round S-box, I need to perform an

inverse S-box on the exclusive or of the portion of the cipher text and your and the

portion of the key which you are guessing and because you do not know what is the key.

So, you guess that byte of the key for example, and then you calculate the inverse S-box

and then, you basically find out any or you target some specific bits. So, this could be for

example, the LSB that you target; it could also be the MSB or it could be any linear

combination of the bits also.

So, depending upon whether the target bit is 0 or 1 and that depends upon your guess of

the key, the traces are divided into a 0 bin and a 1 bin ok. And it is expected that for the

correct key or correct key means the portion of the correct key, the difference of mean

would be non negligible for a specific time instance which we say t star that is t star is

the time when actually the computation is being taking place is essentially happening.

(Refer Slide Time: 02:49)

So, therefore, right I mean 1 because you know like sometimes when you are starting to

work on or DPA for example, it is a good it is an it probably is a good idea to kind of

start with something which are called as simulated power traces. So, you basically try to

simulate the power trace and develop your technique. Later on right you can of course,

replace the simulated power traces by the real power traces in which case the attack will

become more difficult because you will be having noise and other phenomenon , but to

develop your technique and to understand your technique, right simulated power traces is

a good starting point.

So, let us start with that you know like with such kind of power traces we will be

simulating. So, suppose you are let us consider a rolled AES architecture; a rolled AES

architecture as we have seen means that there is 1 round of AES and you are basically

kind of iterating it to get all the 10 rounds of AES. So, it is basically an iterated

architecture and you basically what you are trying to do is you are basically trying to

kind of calculate the power consumption of these device.

So, now, of course, like when you are actually doing this attack you will be having the

actual set up and hence, you will be getting it , but what we will be trying to do is in this

or considering in this case is we will be trying to get a simulation or simulated power

trace. So, let us see how we can do that.

(Refer Slide Time: 04:19)

So, what I mean to say is essentially this like now you have this rolled architecture which

means you have your AES block; this is the AES round and the AES round the output of

the AES round suppose you are storing in essentially a register this register S essentially

storing the corresponding result of your encryption. So, basically like this is not the

complete AES; so, this is just say 1 round of AES and it is being iterated.

So, I am not drawing a very accurate diagram, but this is kind of indicative that is

initially you have you basically taking the plaintext and of course, like there is a key that

you need to kind of XOR and it you are you start your operation of AES; AES and AES

round and then every clock cycle that you do like essentially you know that there are 10

rounds of AES operations. So, basically you can you are essentially latching some data

onto this register ok.

And because of the dynamic switching’s which are happening in this register you are

expending power, the architecture is consuming power right. So, therefore, you can

imagine that this state register I mean although this very hypothetical figure, essentially

right are it is basically consuming power in 12 distinct time instances ok. The first time it

is expending power is when you are doing the initial add round key that is you are doing

the initial add round key operation at that point it is expending a power and then, there

are 10 rounds of AES operation ok. And finally, you are getting the cipher text.

So, typically right that is essentially your 1 plus 10 plus 1. So, there are 12 time instances

or 12 instances in time when the register essentially is making a toggle and therefore,

there is a power which is being consumed. So, what we basically try to model in our

simulated environment is we basically see the register content and suppose you have a

very simple model like hamming weight or hamming distance based upon that you kind

of predict the power consumption ok. Note that when you are doing this prediction you

have a 128 bit register. So, you are basically considering the 128 bit register and based

upon that right you know that the hamming weight.

For example, could be from 0 to 128. So, there could be like 129 possible power levels

and therefore, right depending upon the content of that register content of the 128 bit

state registered you kind of indicate a power consumption. You say that my AES for this

particular time instance is consuming such amount of power ok. So, this is again a

simulation and we will we essentially try to use this simulated framework to develop our

technique or experiment on our technique.

So, therefore, right I mean with this kind of you know like simulated power trace, we

would like to basically now get into how the d DoM works. So, therefore, right imagine

that I do NSample number of such operations ok. So, NSample typically means that you

essentially have you know like you are basically encrypting plaintext for example,

suppose you are encrypting say you know like 1000 plaintext. So, therefore, NSample

would denote the number of randomly chosen plaintext which you are encrypting ok. So,

without.

So, basically like you are encrypting say n number of inputs and that n is essentially here

NSample ok. Now in such an architecture in such a rolled architecture as I said a register

is updated by the output of the AES round after every encryption and the power trace is

again. So, you now you are basically storing the power trace in a register I mean you are

basically storing it in array and the array is name is say sample NSample NPoint.

So that means, basically right is essentially it is a 2 dimension as you can see it is a 2

dimensional array. So, you can visualize this as you know that you are basically storing

the power in the form of a 2 D array, we are essentially suppose you are using this index

to you know like say the number of the sample like suppose you are encrypting the first

or the second or the third and so on and this axis essentially is storing the point or the

tiny instance of your AES operation.

So, this is your this direction is your NPoint and NPoint as we have seen for our

simulated environment is say 12 because there are 12 time instances when the register is

making a toggle. There is an initial add round key followed by the 10 rounds of operation

and finally, when you are getting the cipher text. So, for each power trace, we also store

the corresponding cipher text because we also need the cipher text and the cipher text

essentially as you can understand is that if there are NSample plaintext that, you are

encrypting you get NSample cipher texts ok. And that is essentially denoted by this array

which is cipher text NSample.

So, we simulate that we simulate the power traces by using the power model. So, the

power model could be like hamming weight or hamming distance on the state of the

register before the encryption and then, followed by that of the initial key addition; then

after that there are like nine rounds of encryption and finally, there is a cipher state that

you are generating.

So, therefore, the NPoint is 12 and we choose NSample something like say 8000 ok. So,

this is an ad hoc choice, but suppose in you know like your NSample is 8000. So, now,

we clear this ok.

(Refer Slide Time: 10:03)

So, now so there is a simple trick that you can observe that particularly this works when

you have your hamming your power model is hamming weight power model. So, when

the power model is hamming weight a single trip can be developed. So, the let the attack

target 1 of the key bytes ok. So, let me call that as key for example. Now that is it

therefore, you basically target the corresponding S-box. So, this S-box could be say the

first S-box of your last round.

So, we denote the corresponding cipher text byte in the array cipher text NSample as

cipher ok. So, again this is the first byte of your cipher text. For each of the NSample

runs that you are doing, the analysis partitions the traces into 0 bin and 1 bin and it

targets the you know it basically depends upon the depending on the target bit it

partitions into 0 and 1 bin. Now, for estimating the target bit the attacker computes the

inverse S-box on the XOR of the byte cipher and the guessed key byte.

Because we know that cipher is your corresponding cipher text byte and the

corresponding key which you are guessing is a key you XOR them, calculate the inverse

S-box find out your target and you split and you put your trace into either the 0 bin or

into the 1 bin. But note a point that the cipher text for which the cipher text by it

corresponding to a target byte is a cipher will map into always the same bin. So, what I

mean to say is that even if the for example, if you consider AES there are 16 bytes in the

cipher imagine the zeroth byte for example,. So, if the zeroth byte is a constant

irrespective of what is the value of the remaining 15 bytes that power trace will go to

either the 0 bin or will go into either the 1 bin.

So, that implies that you can basically you know like rather than storing the power trace

into the array sample n cipher NPoint which is I mean rather than storing in it into the

array that we saw previously which was sample NSample NPoint because you had like

8000 encryptions. You can now store the same information in a in a smaller area you can

store it in say sample n cipher NPoint and n cipher in our case is something like 256

because that byte can take only 256 values ok. So, you need not store that in an array you

know like sometimes when you are attacking for example, as we will see right counter

measures, you may need millions of traces you may need millions of encryption.

So, you need not have such a big array, but you can actually store that into a much

smaller array depending upon the size of your word ok. So, you can store it in for

example, sample say 256 NPoint because what you are basically doing is you are kind of

partitioning your entire power trace it into 256 partitions and all the members of that

partition the whether it will go into the 0 bin or whether it will go into the 1 bin

irrespective of key guess actually will go into the same mean ok. Because their fates are

same so therefore, right you need not store that in such a bigger array. So, this is a simple

trick that you can try to adopt when you are developing your implementations.

(Refer Slide Time: 13:11)

So, how do you compute the DoM? So, for all the NPoint instances we simulate the

power traces by observing the hamming weight of the encryption states for all the NPoint

instances that means NPoint is again 12. So, for all these 12 instances you basically you

know like you can simulate the power traces. So, I am talking about the simulation right

now. So, you can simulate by observing the hamming weight of the encryption states for

all the NPoint instances and instead of storing these traces separately you can combine

them by adding those traces corresponding to which the cipher text byte is say cipher ok.

So, what you can do is because later on you need to calculate the average.

So, what you can do is that for all those k all those traces or for all those corresponding

encryptions where the zeroth bytes say takes a takes a specific value, you essentially can

just add on to its current content; current content in the array where you are storing the

power traces and you can store the sum. So, you can store the sum and therefore, the you

can essentially you know like optimize your storage and the entire DoM process.

Therefore, you know like as we will see you can actually write that in a very systematic

manner in a nice form of an algorithm which you can code and which you can automate.

So, the algorithm basically splits the traces into 2 bins based on the target bit say LSB

and then, we compute the DoM and store the highest value of the DoM as an array which

is say bias key. So, the number of entries in bias key will be how much? Will be again

the number of possible key guesses and you have got 256 key guesses for say the zeroth

key byte.

For every possible guess you guess a bias that bias is nothing but the difference of mean

and as we have discussed previously that if you have a correct key guess, then there

should be an NPoint; some time instance when you should get a non negligible value for

the difference of mean ok. And if you get a negligible value of difference of mean in all

instances, then it is quite likely that that is not your candidate key. So, therefore, the key

which has got the highest bias key, we value should be returned as a possible candidate

key.

(Refer Slide Time: 15:23)

So, therefore, this is essentially the whole idea and that essentially has been written in the

form of an algorithm and the algorithm essentially does nothing but essentially does or

you know like implements whatever we have discussed till now ok. So, basically if you

read and this you can read in details from the textbook that we sight and you will find

that what it basically does it calculates an XOR of the cipher and the key. So, the cipher

is set a zeroth byte and key is say 1 byte of the of the key, you kind of XOR them. You

calculate the inverse as S-box and then you basically go to the input of the S-box and

then, that is what you called as partial cipher ok. Then, what you do is you extract the

LSB of partial cipher.

So, you do an anding with say 1 you can extract any other bit also for that matter, but

suppose we extract the LSB because we based on the LSB we will now partition the

traces and if that bit is say 1; that means, if that bit is 1; then what we do is that we start

incrementing the counters for the 1 bin ok. So, we basically have a sum bin that means,

the summation of all the power traces for bin 1, we increment that. We also increment a

counter; that means, how many traces are going into that particular bin and note that your

sample array is now indexed by cipher because as I said that you essentially can index it

by the 256 values ok.

And then, if that bit is 0; then you do similarly for the 0 bin. So, basically you calculate

the average and finally, you calculate the difference of the averages and that is stored in

this mean diff array and then, you find out the absolute mean I mean you find out the you

know like the maximum absolute value and the idea is that whichever gives you the

maximum value is basically returned as the corresponding correct key. So, here is an

experimental run on this and you can very well simulate it because if you have an

implementation of AES even without going to a set up actually which may be costly and

not always reachable. You can actually easily simulate the power traces and you can try

this algorithm. You can just try to maybe implement it using a simple c.

So, is exactly that is being done here. It is basically done on the simulated environment

where there is no noise; that means, the power essentially is modeled by the hamming

weight of the 128 bit state register and then, we apply these difference of mean technique

and then, we target the last round that means, the 10th round of AES and we try to do a

DPA on say the first key byte ok. As you can see that this shows how the bias value kind

of increases for the current key whereas, it does not for the wrong keys and therefore,

you can easily distinguish the correct key byte from the wrong key bytes. And therefore,

it shows that the difference of mean attack works in this setting. More realistic

simulation would be where you can add a gaussian noise to your hamming your to your

power model to your simulation.

So, you can you know use any library which generates these kind of noises and you can

kind of embed it or superimpose it on your hamming weight values and now if you try to

do a difference of mean, as you can see that the attack becomes more difficult, but

nevertheless you can see the separation ok. So, the separation is not as wide as here, but

we still get a separation and we are able to retrieve the correct key.

(Refer Slide Time: 18:35)

So, therefore, that brings us to the you know like the link between difference of mean

and power model. As we have discussed priorly also that the power models can be of

different types for example, like hamming weight, you have got has the hamming

distance power model. So, the question is right how can you adopt your technique for

hamming distance power model and if you think right then it can easily be done so. The

only change that you have to do is that now the classification of the power traces would

be based on the change of the transitions rather than the absolute hamming weight ok.

So, you have to basically calculate the hamming weight , but the hamming weight will be

on the XOR of the present state with the previous state. So, therefore, if you again target

the last round of AES, then you can see that the state register initially holds the output of

the ninth round and after the final round it gets replaced by the tenth round output which

is the cipher. So, therefore, if you take an XOR between the cipher and the ninth round

input right I mean the ninth round output sorry. So, if you take an XOR between the

cipher and the ninth round output and find out the hamming weight of that, then

essentially you can again do the same thing ok.

So, the rest of the description remains exactly the same. So, you can easily adapt your

technique and make it work when you are you know like modeling your power using say

hamming distance power model.

(Refer Slide Time: 19:57)

But here is a very key important point; that means, hamming weight and hamming

distance although we have been using; one of the reasons we are we are using them is

because they are easy to use. So, there is something which is called as stochastic power

model which basically is also or may be mentioned here. So, the difference of mean

technique as we have seen for DPA is actually what is called as a non profile attack ok.

So, non profile means that the attacker essentially gets the hardware, where the secret

key is embedded and starts to do the attack right away ok.

As opposed to this there is another category of side channel attacks which are called as

Profile attacks. In profile attacks one needs to have access to a pair of identical devices.

So, there are 2 identical devices; the first one is a target which is essentially where you

have got limited control and there is a running cipher say AES with a fixed key. You

cannot change that key ok. On the other hand, in a profiling stage or a profiling phase

you have been provided with a similar hardware exactly identical hardware where you

have full knowledge and you have got control on all the inputs like you can change the

inputs, you can change the key and you can do profiling as much as we want.

So, profiling can be used to stochastically learn the powered model more accurately and

that will probably help you to improve the accuracy of your power attack.

(Refer Slide Time: 21:17)

So, for example, like if you consider a target byte say the last round of AES. So, the. So,

let us write by this equation what we are trying to do is so we are trying to say consider x

which is a portion of the cipher and k or small k as a portion of the key which you are

guessing in the last round and then, suppose you basically what you are doing is you are

calculating the inverse S-box which is denoted here as S inverse ok. So, you are

calculating S inverse of x XOR with k and this I denote as say phi of x comma k.

So, this phi of x comma k is my deterministic portion of my power consumption because

it kind of can be determined. It is not a noisy component. It is also called as signal as we

will see later on ok. So, it is a signal component of your power consumption. So, when

you calculate this phi of x comma k, what you do is you apply a function subsequent to

that which is say gi or denoted as gi which does nothing but extract an ith bit as we have

seen in our algorithm right we had extracted the LSB.

So, gi basically tries to extract any one of the bits say the ith bit of the state phi x comma

k and now you essentially have a say a register or a byte for example, and you want to

predict what is the corresponding power consumption because of that content. So, what

we are doing previously is that we were assuming a hamming weight for example; right

and hamming weight would mean that every bit is equally contributing ok.

But on the other hand, as we know that in an electronic circuit right lot of weird things

can happen; what can basically happen is that each of the bits are basically contributing

in a different manner and that essentially is captured by this equation, where we write

that the power consumption is modeled as sigma of i equal to 1 to 8 because there are 8

bits positions and each of these contribute or each of the contribution of the bits are each

the way the each of the bits are contributing are modeled by this coefficients say bi ok.

So, you have got b 1 b 2 b 3 and so on till b 8 and you also have b 0 which basically

stores any other component. So, in the profiling phase, we keep the deterministic part

defined and we keep it kind of constant by keeping phi of x comma; we keep the x and k

constant and we essentially try to you know like observe different power values. Note

that because of noise there will be you know like still certain differences and therefore,

write you as you probably will have you know like an over defined system of equations.

You probably need an over defined system of equations to solve the values of these bi’s.

(Refer Slide Time: 23:55)

So, here is an experimental you know like description written by this paper by Schindler

and other co-authors, where they try to develop a stochastic model for differential side

channel crypt analysis. So, you can observe that here there is an experiment which has

been done with 4 different keys and the deviation or the of. So, here we plot say the you

know like say. So, here is a plot of the eighth coefficient that is b 8 for example, and we

show how b 8 varies over time.

So, you can easily see by that you know the by this variation of b 8 that if you are

applying a hamming weight power model, then that is not accurate because in a in a in a

hamming weight power model we are assuming that the contribution of any of the bits

right is kind of constant overall run over all time instances. But you can observe here that

that is not so and also another interesting point is that even if you are changing the key,

the deviation is actually minor; that means, there is a small deviation in you know in

your prediction of the corresponding contribution.

So, that implies that you know like you need not always you know like know the

correspondingly correct key, you can very very well work with any guess ok; any guess

of the any guess of the key byte and that would give you quite a good estimate about

what is the contribution of the bits and therefore, you can you know like understand what

are what is the stochastic model of your device and later on right you can for example, in

this case another point to be noted is that here there were 2000 equations which we have

solved and therefore, right you need an over defined system of equations.

But after doing this effort right you have got a better understanding about your leakage

model which you can try to exploit in your next phase of the power attack and that is

why right these power attacks are very strong ok. But at the same time right you need an

access or an opportunity to do this profiling phase. So, wherever it is possible we should

do this ok.

(Refer Slide Time: 25:55)

So, now we will start discussing about correlation power attacks or CPA. So,. So, I will

just you know like initiate this discussion and we will we will see more details

subsequently. So, in a correlation power attack this is exactly or you know like quite

similar to the difference of mean based attack. Because here also you are relying on the

fact that there is a you are basically targeting an intermediate computation and typically

the input or output of an S-box just like the DoM technique.

These input values are computed from a known value again which is could be like the set

of cipher text and a portion of the key which is guessed and the power model again you

know like so again you are using a power model say again, we are using the hamming

weight power model and then, you are using it subsequently and in applying their

applying it to develop now a hypothetical power trace.

So, in the previous case we were kind of trying to correlate the power trace with the

single bit or to a linear combination of bits ok. But in this attack we will be trying to kind

of develop a hypothetical power trace and try to correlate it with a real power trace and

the and we were to see how we can develop the data structures and how do we define our

correlations to better understand how the attack works.

So, this we will take up in the next session and we will continue our discussion.

Thank you.

