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Algorithm to Hardware

Welcome to this third lecture on the topic of Hardware Security. So, today we will be

trying to understand how to map Algorithms to Hardware.

(Refer Slide Time: 00:26)

So, this is essentially, this talk will be covering few aspects on hardware designs. So, we

will start with understanding about what is mean by data path and control path. We will

be trying to understand or identify data path and control path elements to implement

algorithms. We will be trying to see you know like data path and control path design in

the context of an example. 

So, this example is based on a gcd processor or a greatest common device computation

processor. And finally, we will  be  trying  to  see how we can do design  exploration,

because designing is one thing and exploration of the design is another aspects.

So, how do you design is one aspect, but how do you also explore various opportunities

and various implications  of your design,  how do you analyze the scalability  of your

design. So, we will be considering FPGAs as I mentioned that K input LUTs. So, in this



case, I will be taking K equal to 4 and we will try to model the design, and will try we to

understand how the performance scales in our design. 

(Refer Slide Time: 01:24)

So, to start with when we map an algorithm to hardware, I mean you understand that

performance is the main reason why we do hardware design. So, definitely you know

like that is a primary goal of a design. So, for an efficient design, like if you really want

to understand how to efficiently implement an algorithm in the form of an architecture or

an hardware, So, you need to understand the components of the hardware ok. So, you

need to understand what are the basic blocks which are hardware is made of ok.

So, there are two important aspects on a in a hardware; one is the data path, the other one

is  a  control  path  ok.  So,  data  path  are  basically  those  things,  which  constitutes  a

computational a units of your design. And the control path essentially sequences the data

path elements. So, it basically kind of switches, kind of loops in around in that along the

data  path elements;  so it  basically  does  sequencing of  your  data  path  computational

blocks ok. 

So, in this diagram for example, you can see that there is a date there is, there are three

important blocks. For example, there is a data path, there is a memory and there is a

control  path.  So,  the  idea  is  that  when you take  inputs  for  example,  the  inputs  are

processed  by  both  data  path  as  well  as  the  control  path,  but  data  path  essentially

comprises of the main computational unit ok. So, they essentially (Refer Time: 02:51)



your processing ok. Some of this data may also be residing in the memory. So, it may

happen the data path elements needs to fetch some data from the memory, and also write

back into the memory. And the control path is essentially kind of communicates with

both. So, basically it kind of talks with both data path as well as the memory, and tries to

communicate and tries you sequence your operations ok. 

(Refer Slide Time: 03:15)

So, let  us take an example.  So, this is an example of a binary gcd processor, a very

common  example  from straight  from the  textbooks.  So,  you  see  that  there  are  two

integers u and v. And what we are interested is to; we are interested is to compute the

greatest common devisor of u and v. So, in this case, the greatest common devisor is

stored in the variable v ok. 

So, just to parse through the binary, so you also called a binary Euclidean algorithm. So,

you can see that the algorithm is to sort of a modification of the original long division

Euclidean algorithm for computing, the greatest common devisor. So, the algorithm is

broken up into certain parts or certain possible branches ok. 

So, the first thing is that you check that whether u and v are same or not, because if you

know that u and v are same, then you have a trivial result. If u and v are not same, then

you do or compute in a recursive fashion ok. So, what do you first check is that whether

both u and v are even; if both u and v are even, then you can say that ok, this is the if the

if the greatest common devisor of u and v is z. Then that is same as if I take 2 or fact



about 2, and compute gcd of u by 2 and v by 2 ok; so that comprises your first branch

here ok.

So, this is this branch which I am talking about, else it may happen that one of them is

even say u is even, in that case I can divide u by 2 and compute the greatest common

devisor of the of u by 2 with v ok, or it may happen that u is odd and v is even in that

case, I will just divide v by 2 ok.

So, I know that since one of them is odd, and the other one is even, 2 is not a common

factor or it may happen that both u and v are odd, in that case I will just check whether u

is greater than equal to v. So, I will if u is greater than equal to v, then I will subtract out

v from u. And I know that if there are two odd numbers, and if I subtract right, then I get

ready I get an even number. So, I can divide this by 2, because I know that v is not odd v

is not even. So, therefore 2 does not divide v.

So therefore, I can write it is greatest common divisor of u minus v by 2 with v, and if it

is other way round instead of doing u minus v, I do v minus u ok. So, now what we want

is we want to realize a co-processor on FPGA to compute the greatest common divisor of

two given numbers, but I want the use this algorithm. I want to essentially kind of map

this algorithm into an hardware block.

(Refer Slide Time: 05:39)



So, in order to do that, first we will try to identify the states of the algorithm, so that is

the first step ok. So, this is the sequential design. We can understand this is a sequential

design kind of does the computation in not like a combinational design like in one short,

but it does not over several iterations ok. So, the first thing what we try to do is, we try to

write the code in a format which is an HDL language, which is something like a very

long language for example of VHDL language, but is not exactly HDL des depiction of

the algorithm.

So, what we try to do is; we try to kind of think of a possible you know like we try to

first of all think about how do we store u and v ok. So, the first thing is that we think of a

register  transfer  logic  on  a  RTL description.  So,  here  we  know  that  there  are  two

variables u and v. So, in order to stored u and v, I allocate two registers say XR and YR

which are used to store the values of u and v in my computation.

So, here the first thing is the assignment where I essentially assign u to XR and I assign v

to YR ok. And then I initialize a count to 0, why I will come to explain very soon, but

this is the first step ok. Now, what I do is in the algorithm what I see that I check whether

XR is not equal to YR. So, this is straight away from previous algorithm, because it was

u is not equal to v in the previous algorithm.

Here, I have to check that the first thing which has to check is that whether both u and v

are even ok. And the way I can you know I check that very easily, if we think of a

hardware or you know like an implementation of the algorithm is you what we just need

to check is the LSB, you just need to check the Least Significant Bit; if the LSB is 0,

then you know that u is divisible by 2 likewise for v.

So, what I just check is the last bit of XR and YR. And if we turns out that both of them

are 0, then I know that we have a even number ok; we have both u and v as even. So,

then what I do is I have to even if we go back to by algorithm what we have to do is we

have to divide this by 2 right, we have to divide u by 2 and v by 2.

So, how will you do this in hardware, the usual way of doing this in a hardware is doing

a right shift. So, here we do a right shift of XR and we do a right shift of YR, both are

equivalent to saying that I divide them by 2. And then I if we remember that in my

previous algorithm right I have to factor out 2, but rather than doing that now, I just keep

that count of the number of times I am doing this operation ok.



So, what I do instead I a kind of increment the counter and count was initially 0 and

stabling incrementing count like count plus, plus ok. Count is equal to count plus 1. So,

this is one part or state of the algorithm. The others step, which I will or other possibility

which can happen is that again one of them is even, and the other one is odd.

So, it can happen that either XR is even or YR odd is out or it can happen that XR is odd

and YR is even. So, so therefore I kind of again you know like do a similar thing here, I

just check the LSB of both XR and YR. If XR 0 is 1 and YR 0 is 0, I do a step I mean

which is like I just I know that if this happens, then y is even; and if y is even, I will just

like right shift y ok, I will not disturb XR.

Likewise, if it happens in other way right, I then I will disturb XR and not affect YR.The

other possibility is that both of them that are odd that is a else part here. So, here again I

do with comparison between XR and YR; if XR is more then I just right shift XR minus

YR ok. So, basically I do u minus v by 2 that is a analogy here, likewise right I do YR

minus XR.

And then when finally, all of this is done that means, when I exit this while loop I come

to this point and remember I have a value of count to indicate like how many times I

have taken out too. So, how I how I can do that is I mean what have to do is have to

multiply two count times right, I have to do 2 to the power of count into XR or 2 to the

power of count XR. So, 2 to the power of count means have two kind of length shift XR

each time ok. So, therefore, I left shift XR count times and that is equivalent to do you

saying that I am doing 2 to the power of count ok.

So, I do 2 count, then in 4 count and so on in powers of 2. So, if you see this algorithm,

therefore, we can say that this algorithm has got six states, I have numbered them from 0

to 5. So, this is my state 0, where are initialize. This is my state 1 where I check that both

of them this one possibility right, all of these states are basic an indicating some unique

configuration of your algorithm.

So, here you see that state 0 stand typically for the initialization part, whereas state 1

stands for the case when both of them are even state 2 and state 3 stands for the cases

when one of them is even and other one is odd. And state 4 stands for the case when both

of them are odd ok. And state five stands for the case when I am I am almost going to



give you the output ok, that is a final output state ok. And hereafter where is very soon

we will get the result which is been stored in a register XR ok. 

So, this essentially is a very you know like a very simple example, but we will see you

know  like  that  you  can  actually  apply  this  technique  to  implement  even  complex

algorithms ok. So, if it is important that we understand how the state assignment are

done, and how we how we translate subsequently to a hardware design ok. 

(Refer Slide Time: 11:28)

So, now let us see that how do we identify the date path element. So, basically as I said

data path elements are nothing but computational units ok. So, let us try to see; what are

the computational units which you have already used in your design ok. So, if you see

for example, the elements or the components which you have used are typically shifters,

you have used right shifters, you have used left shifters, you have used added ok. So,

basically you have done subtraction which can be released by addition. So, definitely we

need a subtractor here. And there we also need comparisons ok.

And comparators you can also implement with I mean a by a subtractor ok. So therefore,

you virtually right, if you count the number of or the data of path components, then you

have a subtractor, you have a complementer, you have a right shift and left shifter, and

counter because you also have counted ok.



The other element which is not very explicit here is a multiplexer, because you see that

there are several branches in my algorithm. So, these branches are essentially inferred as

multiplexers in hardware, because multiplexer essentially gives you select logic either

you go in this path or you go in other path depending upon the value of the control logic

ok. So, multiplexers are required in large numbers for the switching which is necessary

for  competitions  done  in  the  data  path,  and  selection  lines  in  the  multiplexers  are

configured by the control circuitry.

So, therefore, I mean each multiplexer we will have a select line. And this select line

right will get values. So, these values will be given by the controller will be given by the

control parts. So therefore, what we have to do is that we have to sequence the data path

elements, we have to place the data path element, we have to place the data path element,

we have to place the multiplexers, the multiplexers will be receiving inputs ok. So, the

data path inputs will come from the data path elements, but the control input will come

from the controller. The controller will basically configure the multiplexers and will kind

of switch, so that your data path sequence gets configured ok. 

(Refer Slide Time: 13:30)

So therefore, right I mean that is what we have to discuss about the data path component.

We also have the control path ok. So, the control path as I said is a sequential design. So

therefore,  the  data  path  is  lastly  is  a  combination  design,  but  the  control  path  is  a

sequential design.



So, in this case, you can see that it is a 6 state, state machine, because we had six states

in  my  algorithm.  And  the  controller  in  this  case  receives  inputs  from  the  partial

computation of the data path elements. And based upon the current state, and the input it

perform state  transition,  it  goes from like in  between all  the six states  and produces

control signals. Now, these control signals are what configures data path elements or the

switches ok. So, that basically gets configured the data flow gets sequenced and that

essentially  is  done explicitly  by the controller. The controller  generates  these control

signals which configures the multiplexers ok.

(Refer Slide Time: 14:27)

So, I believe that this will be more clear with this diagram. So, here you see that this is

the  overall  architecture.  So,  we  have  got  the  data  path  element.  So,  this  is  your

correspondingly your data path component. And here is your controller logic or control

path ok. So, basically like this splitting of an algorithm into two components, the data

path and the control path separately is a very important or central part of VLSI design at

least when digital design is concerned ok.

So, in this case, you will see that I mean we can try to understand how this hardware

works. So, the first thing which you would notice that the data path stores the values of

XR and YR in two registers, that means, when you get the value of u and v, you load

them in XR and YR ok. So therefore, XR and YR are two registers, and they are actually

loadable registers which means there is an explicit load signal which is indicated as by



this signal called load underscore XR. When load underscore XR is high then XR gets

loaded. Likewise when load underscore YR is high then YR gets loaded ok.

So, the values of u and v are initially you see that there is a big MUX which are placed

here, which I call as the MUX A. So, it is not actually one single MUX, but it is kind of

comprised of several MUX ok. It is kind of a symbolic logic. So, what it stands for here

is that it receives some inputs, it receives for example, a load underscore u v. So, load

underscore u v, when it is 1, then initialization happens, that means, u and v are being

loaded into XR and YR. And of course, you have to also make load underscore XR high,

and also load underscore YR high, to load the values of u and v into the registers XR and

YR ok.

So,  therefore,  once  the  values  of  u  are  and v are  initially  loaded,  then we start  our

processing. So, again you know like the state machine sees the values of XR and YR. So,

these XR and YR or rather XR 0 and YR 0, which means the LSB of XR and the LSB of

YR are being transferred to the controller, the controller sees these (Refer Time: 16:34),

because  that  is  very  important  for  our  control  path design.  So,  we probably  tries  to

understand whether both of them are even, both of them are odd, one of them is even and

the other one is odd ok.

So, based upon this least bits of XR and YR are now passed to the controller to indicate

whether present values of XR and YR are even or not, and then the next iteration begins

ok. So, the next iteration values of XR and YR are essentially you know like based on

certain  computations.  As  we  have  seen  in  the  algorithms  we  have  to  do  some

computation. So, for example you have to do a subtraction, you have to do a shifter and

so on ok. So therefore, depending upon the after whatever is the immediate computation

you do them, and then you have to update your XR and YR ok. So, you have to either

update both XR, YR or maybe you have to update one of them ok. So, this logic is

essentially you know like told by this signal which is called as update underscore XR.

So, update underscore XR or update underscore YR basically tells whether you have to

update XR or you have to update YR or you have to both or any one of them ok.



(Refer Slide Time: 17:35)

So  therefore,  what  are  the  computations  which  we  are  doing  on  XR  and  YR  are

subsequently listed. So, the first thing which we have seen is the division by 2 ok. And as

I said the division by 2 is done by two right shifters. So therefore, you will see that in the

data MUX that there are two right shifters which are placed here. So, this is one right

shifter and this is the other right shifter. So, these are the two right shifters which have

been placed ok. The subtraction the other thing that you have to do is subtraction.

So, you have to do equality check trying to understand whether XR and YR become

same given by the while loop condition ok. And the other thing which you have to do is

to understand whether XR is greater than or equal to YR or XR is lesser than YR ok. So,

this  you can do both you can do by a subtractor, because the first  one is an explicit

subtraction,  the  second  one  you  can  do  by  a  complementer  which  is  in  the  2S

complement. So therefore, that also you can realize by a subtractor.

So, what we do here is therefore we place a subtractor here followed by a complementer.

The  subtraction  is  the  usual  subtraction  between  XR and  YR.  And depending  upon

whether the result is you know like negative or positive, you do a subsequent inversion

of the result. So therefore, if you do not want XR minus YR, you compliment it to get

YR minus XR ok. So therefore, the circuit also has got an up down counter as I said

because  therefore,  before  that  before  I  go  into  that.  So,  after  you  have  done  these



operations, and you want to kind of load your data into XR and YR, you see that there

are two ways in which you can probably load.

So, if you go back to the algorithm, you will see that the two possible ways or where you

can load is you either update XR directly that means, you just right shift and update XR

or  it  may  happen  that  do  a  subtraction  and  then  update  XR  ok.  So,  this  logic  is

encapsulated by this signal. So, this signal is told as or written as load XR after sub or

load YR after sub. That means, if load XR after sub is high, then rather than taking the

result from this point which is the right shift actually what you do is you can take the

result after subtraction ok. So, you basically take the result after subtraction and then y

shift. Otherwise you take the result directly from XR and right shift, then you update XR.

So, these are the two possible things which can happen, similarly, for YR.

So,  once  this  process  is  done you have  to  basically  there  is  an  upcounter  which  is

essentially as I said you did in incrementation of a counter. And finally, right when you

are at the final state that is S 5 or state 5, you also can do a left shift you have to also do a

left shift ok. So, there is a shifter which can either there is a counter which can either

count up or countdown ok, because when you are when you have when you have done. 

So remember that  when we are doing this  when we are in this  part  of the loop that

means, when we were in this part of the loop we were counting up and when we are in

this part of the algorithm, then we are counting down ok. So, we are either counting up

or we are either counting down. So, this means that the counter that we have should be a

configurable counter, it  should be an up down. The counter  can count up as well  as

countdown ok; so that is essentially the elaboration on the data path of the algorithm.



(Refer Slide Time: 20:59)

Now, we can come to the state machine of the algorithm. So, in the state machine as I

said there are six states starting from S 0 to S 5. And what we try to see over here is how

the controller how the state transitions take place. So, I will try to explain few of them

for example, I mean I believe that we can understand the remaining from those from

these examples.

So, in this case the controller receives four input from the data path ok. So, if you see

right, here the controller receives some inputs. So, these inputs are XR not equal to YR,

XR is greater than or equal to YR likewise right there are four inputs with the controller

receives. It receives XR equal to YR, XR 0, YR 0 which are the LSBs of XR and YR.

And the result of the subtraction, that means, XR is greater than or equal to YR or not.

So,  all  of  them can  be  indicated  by  0,  1  values  ok.  So,  therefore  these  essentially

determine; the state transitions as well as also has got influence on the output of the

controller ok.

So, for example, if your present state is S 0, that means, that you are in the initialization

state, then your load underscore u v is 1. Load underscore XR and load underscore YR

are both 1, because you are loading XR and YR with the content of u and v ok. And

suppose you receive an input denoted as 0, and followed three don’t cares, because the

moment you see this being 0, you know that this is 0; that means, XR is not equal to YR

is 0, which means XR is equal to YR ok.



And what you do in the algorithm, if you remember right if you see XR if you see if you

go back right to the algorithm, and check what you do when you see that. So, this loop

right, this while loop continues when XR is not equal to YR, so that means, when XR

becomes equal to YR, you exit the while loop and you come to state 5 ok. So, therefore,

exactly this is what is been depicted here in the state machine, that means, whenever you

see that  this  happens you know that  the  next  state  is  S 5 ok,  and that  is  essentially

tabulated in the table.

Likewise if you receive an input which is 1 0 0 cross which means like XR is not equal

to YR, and you see that both XR 0 and YR 0 are 0 that means, both of them are even.

Then you see that the state is S 1, because remember that the state S 1 was what which

was which was processing that particular scenario right. I mean XR this is the state right

that is when both of them are even, then this is the state which is handling this ok. So,

therefore then you need to jump to state 1 ok. So therefore, that is exactly what is done

here the next state is S 1.

(Refer Slide Time: 23:38)

So, likewise when you see the present state is S 1 ok, if the state is S 1 at this point, you

see that what you essentially do right if you go back to the algorithm, when you see that

both of them are even, then I mean for example, right if you go back to the algorithm,

and check exactly what is done here, you do a right shift of XR and a right shift of YR.

And you update XR and YR and you also up count a counter.



So now, if you go back to the state table then you see what you do exactly is this you

make load underscore XR and load underscore YR both 1. You update underscore XR

and update underscore YR also as 1 ok. And update counter is also 1 that means you also

have to increment your counter. And whether you are incrementing or decrementing is

denoted by this signal ok.

So, likewise you again receive inputs like 0 cross or there is 0 don’t care, don’t care,

don’t care. So, in this case again you have to make the next state as S 5, if you get 1 0 0

cross, then you have to make the next state as S 1. But if you get and input like 1 1 0,

then you know XR is odd, and therefore, your next state has to be S 2 ok. So, that is what

you have essentially done throughout the  state transition table, and you essentially can

populate the entire table in this fashion ok.

Now once we have done that right you basically have your hardware. So, your hardware

you should implement this in very log, and you should have the data path and the control

path. And essentially it should be like as I said in the previous class, you have to simulate

that and see that computation.

(Refer Slide Time: 25:18)

So, now we essentially come to the next part or you know the exploratory part. We are

here to do a performance evaluation of the design, because as I say that is one of the

primary goals of developing a hardware design is performance ok. So, the performance is

context sensitive like depending upon several you know like your application, you may



either want you know like to make it low power or you want to make it fast or maybe the

objectives are different.

But broadly right in a combinational circuit, the most important aspect what you want to

optimize is the critical path delay ok. So, the critical path delay right essentially is often

predicted by synthesis tool which tells you right that from register to register what is the

maximum path, and that kind of gives a bound on the maximum frequency that you can

operate ok. So, for example, your maximum frequency right at which clock frequency, f

clk can operate you say f max ok.

(Refer Slide Time: 26:10)

So, likewise right for the sequential if you consider sequential circuits, then along with

the critical path, the other important thing is the number of clock cycles which you need

to complete. Now, if you observe the gcd processor, we just now discussed right it is not

a constant time implementation that means right depending upon the inputs u and v, the

number of clock cycles which would be required can vary. For example, in this case it

will be proportional to the bit length of the bigger argument ok.

So, therefore, on a average right, if you denote the number of clock cycles as cc average,

then the total computation time will be cc average by f max ok. So, if the number of

bytes  of  data  being  simultaneously  processed  is  N  b,  then  another  very  important

parameter  was  what  is  called  as  throughput  ok.  In  this  case  the  throughput  will  be

denoted as N b by t c because t c is the time which is required to do a computation and



therefore, you will get something like N b into f max by cc average. So, this can denote

the throughput of your hardware. So, when you are making a new design, these are the

parameters which you have to quote about your design and show how competitive it is

ok. 

(Refer Slide Time: 27:15)

So, now when you want to make a design right, the other important thing is the resource

consumed. So, you also want to make your design more compact. So, therefore, let us

take a look back at our structure of the LUTs. So, this is the structure of our LUT for

Xilinx Virtex 4, where the LUT has four inputs. So, it is basically realizing any four bit

Boolean function ok.



(Refer Slide Time: 27:36)

So, now if you take these two functions like these are both Boolean functions y 1 and y

2, one of them is XOR of x 1, x 2, x 3, the other one is an XOR of x 1 and x 2. So, you

see that in terms of gate equivalence,  one actually takes only one XOR, whereas the

other one takes 3 XORs ok. So, I would expect this one is more consuming than this one.

But if you consider FPGA designs which is slightly different you see both of them will

take one LUT ok. So, I will say therefore, say that the first design which does more

computation is actually still needing 1 LUT, that means, it is utilizing the LUTs better ok.

So therefore, y 2 is actually underutilized LUT. The LUT is not maximal utilize because

you see that once you have realized y 2 in that you cannot realize any more function in

that the remaining part is kind of a waste. So therefore, what we want right is we want to

make the number of unutilized or underutilized LUTs as minimal as possible ok.



(Refer Slide Time: 28:34)

So, how do we do that? So, here we without you know like going into the derivations

you see that we can model them pretty accurately ok. So, what we can do here is for

example,  the  number  of  LUTs  for  a  q  bit  combinational  circuit  that  means,  a

combinational circuit which has got q inputs for a four input LUT can be modeled by

these equations ok. So, you see that I have covered different cases, where q is 1, then of

course, I do not need any LUT ok. If q is less than 1 and 4, then I need one LUT, but if it

is more, then depending upon two cases, I can pretty much say that is like the (Refer

Time: 29:09) or float of q by 3 ok.

So, the other important parameter is the delay. So, again you know like delay is a hard

thing to compute in FPGAs, but we just want to compute the number of LUTs which lies

in the max path. Then you can pretty much accurately model that by log q base 4. For a k

input LUT, it will be log q base k ok. And then I multiply it with the delay of the LUT to

get an understanding about what is the delay for say log q base 4 LUTs. So, therefore,

this gives me the delay for a q bit combinational circuit ok.

So, now the question is like if I want to know; what is the percentage of underutilized

LUT, then you observe that l u, there can be I denote LUT k, to denote the fact that the k

input k inputs out of 4 are used. For example,  in my previous case, y 1 was LUT 4

because I have got 4 inputs to the function ok; y 2 was a two input, so it was LUT 2. So,

you can say in that case right that LUT if I consider LUT 2, LUT 3 and LUT 4, then LUT



LUT 4 is not wasting any look up table, but the remaining thing that means, LUT 2 and

LUT 3  are  what  are  contributing  to  your  underutilization  of  look  up tables  ok.  So,

therefore, the way in which you can calculate the percentage of underutilized LUTs is by

adding LUT 2 with LUT 3, and dividing by LUT 2 plus LUT 3 plus LUT 4. So, you will

get a sort of an estimate about the under utilization of the look up tables ok.
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As I said that for FPGAs because in FPGAs you do not only have LUTs you also have

routing delays, it is very complex to analyze delay ok. But from experiments you can see

that if you take combinational circuits, then the delay will be actually vary linearly with

the number of look up tables in the critical path ok. So, here is an experiment that we did

for some combinational multipliers.

And  for  this  combinational  design,  we  will  start  increasing  the  dimension  of  the

multiplier and we start plotting the delay with the number of look up tables in the critical

path. Then we see more or less linear relationship ok. So therefore, we can pretty much

accurate for accurately predict the delay or at least understand the trend of the delay by

using the number of look up tables or by like giving an estimate of the number of look up

tables which lie in the critical path of my design ok.
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So,  once  we  have  these  two formalism right,  we  can  essentially  start  modeling  the

components  of  the  greatest  common devisor. So,  if  you see  in  the greatest  common

devisor, the other very important component is the adder ok. Now, modeling the adder by

this look up tables is slightly tricky, because here if we can observe that in most of the

FPGA circuits there are dedicated adders which mean that we have got the normal look

up tables, but there is also an additional chain ok. Now, this addition chain is much faster

compared to the normal LUT delay ok.

So, in order to understand that what we did is we basically incorporated a scaling factor.

You can incorporate a scaling factor which will essentially tell say that you now like if

you are if you want to kind of estimate the delay of your adder, then for an m bit adder

the delay can be estimated by m by S and seal of that. That means, like that means, right

you are basically reducing or time to time incorporate the speed of your carry chain ok.

So, for vertex 4, you can estimate that S will be around 17, so that means, like with this

value of S, you can actually you can actually you know like compare the added delay

with other look up table components. So, it kinds of brings it to the same platform.
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So, therefore, therefore, once you have these tools, you can observe that you can model

the  multiplexer.  Remember  that  I  am  multiplexer  is  a  2  to  the  power  of  t  is  to  1

multiplexer which means that there are t select lines, and there are 2 to the power of t

inputs. So, therefore, the multiplexer is a Boolean function of dimension 2 to the power

of t plus t variables ok. That means the number of variables to the multiplier the number

of input variables of the multiplexer can be modeled as or can be enumerated as 2 to the

power of t plus t.

So, therefore, if you fit into the previous expressions the number of look up tables will be

around you can model it by LUT 2 to the power of t plus t. So, 2 to the power of t plus t

is an argument to the LUT function that we just now elaborated mentioned. So, therefore,

for, a m-bit gcd multiplier, the number of look up tables is m into LUT 2 to the power of

t plus t. So, here m is the m-bit. So therefore, you can visualize that each multiplexer is I

mean each multiplexer can be broken up into m multiplexers, so all these multiplexers

are working in parallel ok.

So, therefore, the number of look up tables will be m times the number of look up tables

which are required to implement one multiplexer ok. And the number of look up tables to

implement one multiplexer is LUT 2 to the power of t plus t and that I multiply it with m

to get the overall number of look up tables. Likewise right you can get the delay MUX,

the delay MUX is 2 to the power of t plus t, and you do a log with base 4 ok. And



therefore, you get an estimation of the delay you exactly fit into the previous expression

and you get an estimate of the delay.
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So, now you kind of estimate the delay of the LUT of the overall design, you can see that

you have got MUXA, MUXB, MUXC and MUXD in the there are four multiplexers in

your architecture, and there are two subtractors ok. So therefore, the overall the total

LUT count will be two times that required for a subtractor plus the summation of all the

four multiplexers. Similarly you can, so in this case actually I have ignored the look up

tables which are required to the state machine. For the state machine assuming that it is

much lesser compared to the data path components ok.
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Likewise you can also calculate the estimated total delay. So, in this case, this is your

data path. So, again you can see that there are four multiplexers MUXA, MUXB, MUXC

and MUXD which we essentially already enumerated you know like accounted for while

counting the number of look up tables. If you see the delay right, this is your critical

path. So, we start from this register and we come back to this register ok, so that means,

it starts with a subtractor, goes to the complementor, goes to this MUXD, comes back to

MUXB and finally, goes to MUXA.

So, you can estimate the delay in this way, you can estimate the delay in this fashion. So,

for example, it says like 2 m by S plus 1 plus 1 plus 1. So, in this case, it is 3 plus 2 m by

S, and therefore that gives you the overall delay ok. So, why you essentially bringing one

delay for the MUX is because you can visualize although it is a big MUX or it looks like

a  big  MUX.  You  can  visualize  this  MUX  to  be  made  of  a  two  multiplexers,  one

multiplexer for updating XR, and the other multiplexer for updating YR. And both of

them have got delay of one look up tables ok, so or one look up table. So therefore,

therefore we write here one for each of these multiplexers.
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So, with this estimates right you can actually try to experiementally validates. So, the

idea is that you can try to take a vertex four device and take a Xilinx ISE tool or any

other FPGA tool. And try to repeat this experiment for different versions of gcd. So, you

can do gcd implementations for different bit lengths,  and try to see how your design

skills  ok.  So,  you  will  get  some  estimate  from the  cat  tool  and  you  can  use  these

modeling estimates also and try to see how well they correlate. The reason why these

models  are  useful  if  you have these models;  then without  doing the design you can

actually got the sort of like the performance of your design, and therefore, you can make

decisions already in the design cycle. Note that, it is very important to take decisions

early in the design cycle because it can save lot of time and manpower ok.
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So, therefore right here is an example of how your look up table skills. So, you see that

we have got a very much to your like a close following. Although you know like the

LUT estimations that we had were actually minimal, that means these are the minimal

number of LUTs you need to implement ok. So, therefore, right it matters pretty well. If

you see the delay, this is the delay estimation although it does not match exactly, but you

still see that the trend is predictable ok.

So, I have given two designs two plots here, one of them is for when you have flattened

the hierarchy, and the other one when you have not flattened the hierarchy. So, these are

so  the  flattening  means  that  if  you  take  a  design  right  you  basically  you  have  got

different modules in your design, but when you flatten it, you flatten them to one level

that means you have got one single level. And the other is like when you have kept the

hierarchy on in  you synthesizer;  that  means,  that  you essentially  are maintaining the

hierarchy of your design ok. You will get slightly different estimates for them.



(Refer Slide Time: 37:56)

So, these are the references that I have used for the discussion.
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And you know like so what we basically discussed is that it is very important that we do

a proper division of data path and control path and that is a key for hardware design or

hardware  architecture  design  for  an  algorithm.  Always  we have  to  start  with  a  nice

architecture diagram that is a zeroth step of VLSI design. And performance modeling can

be a useful tool to guide the exploration more than accurate estimation. One can observe



trends in the design which can be helpful in making all the decisions in your design cycle

ok.

With this,  thanks for your patience.  And hope we will  again continue on subsequent

topics in the next class.


