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So,  welcome  to  this  class  on  Hardware  Security.  So,  we  shall  be  continuing  our

discussions on hardware security and in particular we shall be discussing about Power

Analysis.

(Refer Slide Time: 00:25)

So, I will be trying to talk about in particular noise as we were discussing in the previous

class and we will try to see how we can statistically analyze the component of noise. 
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And try to estimate the success rate of a difference of mean attack. So, in particular right

as I was discussing in the last class, we essentially have this phenomenon of electrical

noise  in  circuits  which  is  often  due  to  the  power  supply,  the  clock  generator,  the

conduction and also the radiation emissions from components which are connected to the

device and their attack. And the idea is that because of these presence of noise although

you are processing the same operation your ok, that is you are suppose in the context of

encryption you are basically taking the same plane takes the same key, but still you will

get slight variations in the power consumption. 

(Refer Slide Time: 01:21)



And that is a bother for a cycle and attacker because a cycle and attacker you want to get

as much noiseless in a power trace as possible ok. Along with electrical noise, you also

have another component of noise which is called as the Algorithmic Noise. So, what is

an algorithmic noise? So, let us take this picture of Rijndael or AES. So, this you can

easily  generalize  it  to  any other  target.  So,  what  we do is  as  we know as  we have

discussed is that in a power attack setting, we basically try to do a divide and conquer

attack right. So, we basically try to kind of concentrate on say a red portion here as

shown here and this essentially is a component of your for example, or a part of the state.

So, suppose we are doing a power attack from the plaintext, we can easily do it or just

change in the discussion and do it from the cipher text also. So, here the algorithmic

noise or the switching noise occurs because of the contribution of logic cells to the power

consumption, we just which are not under attack ok. The power trace corresponds to the

total power consumption of the circuit. So that means, like although you are say targeting

a specific region or portion of your state, but at the same time the other logic component

of the logic cells are also toggling, like they are also consuming power and therefore, the

power consumption right essentially it takes care I mean has got both these components.

So, it has got a component which I called as a signal whereas, the other components; that

means, which are not a part of this attack or we are not you know like considering them

in this attack. They are serving to generate noise. This component of noise is called as

algorithmic noise because you know like it basically has got something to do with the

algorithm itself ok. So however, in I say that however, in the attack we target only a

small part see the red circle in the figure to reveal a portion of the key ok.

Now the power consumption from all other parts; so, this blue component for example,

essentially forms what is called as the algorithmic noise. So, therefore, you can easily

kind of rationalize that this would be more in a parallel implementation compared to a

serialized implementation because in a serialize implementation maybe you will just do

one  s  box  at  a  time  and  therefore,  you  will  not  have  the  other  s  boxes  generating

algorithmic noise. So, therefore, right I mean and I will come back to this point later in

our discussion. 
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So, therefore right as I said at the beginning that for your set up the quality of probes is

extremely important and they need to be of good of you know of satisfactory quality. So,

therefore, like I mean, so the observe that power as I say the power consumption of the

CMOS based cryptographic devices is an analog high-frequency signal which means that

the frequency components are of the power signals are quite high or could be in you

know like GIGA hertz range. 

Therefore, when you are measuring these signals, it could be challenging because you

can immediately understand that when you are transferring the power ok; power signal

from your target to the oscilloscope,  there are there are a lot  of things right through

which  the  power  signal  is  travelling  and  because  of  that  right  those  there  could  be

components which are lost; there could be high frequency components which are lost. 

In particular right, I mean there could be you know like when you are propagating from

the logic cell  on the device to the oscilloscope.  There could be factors  like filtering

because of these channels. There could be cross talks. There could be thermal noise and

the parasitics in this mentioned path essentially it serves as a filter. They basically limit

the bandwidth ok. So, for example, you can have the bypass capacitances or you can

have you know the inductances, all these things will play role do you know will play a

role to basically you know like serve as you know like sort of like a band pass filter.



They will they will basically you know like kind of remove some of the high frequency

components. 

So, therefore, the probes of the oscilloscope should have a bandwidth of more than 1

Gigahertz as a thumb rule and typically less than 4 pico Farad of capacitive loading ok.

With such settings, you can get a high bandwidth part of the power traces to propagate

without any degradation. So, this is an important thing and that we need to take care of

when we develop our side channel setup. 

(Refer Slide Time: 05:13)

So, again like I said that; so, let us try to look again at the power traces, but now from the

point of you know like trying to do a develop a statistical analysis. So, electrical noise as

I said of a power trace can be characterized right typically ah. So, it is a very important

component like when you are considering the power consumption your power is kind of

superimposed right with a component from the noise or the electrical noise. 

Now, this component of noise which is the electrical noise typically can be modeled by a

Gaussian distribution  ok.  So,  therefore,  right  you can see  that  you have an you can

basically kind of define it by a mean which is mu and a variance which is sigma square

and as you know that from statistical theory that you try to develop estimates for these

parameters. So, for example, right average or x bar is you know like is essentially a an

estimator which is used for beam and likewise the empirical variance or s square is used

as an estimator for variance; your sigma square.



Now for some fixed value and operation right as I said the power consumption is fixed

except for the variance that is introduced by the electrical noise. So, therefore, right when

I am keeping my plain text and my input key for example, same; then, I would expect

that the component which is essentially that is the real signal. That means, the power

consumed due to the actual processing of information that is a constant ok; whereas, the

other components essentially or you know like the electrical the noise missing essentially

tries to kind of develop the variation. I mean the variation is coming because of the noise

ok. 

And therefore, and therefore, you will see that if you plot at a specific time instance if

you basically try to plot the power consumption, although you are keeping you know like

keeping the plane takes same and the key same, you will find out there is a variation and

you will see that the variation looks like a Gaussian distribution or a Normal distribution.

So, this is this diagram shows you know like again that you are basically trying to obtain

the power traces of AES and you can see that all of them looks roughly same, but there

are small differences ok. So, therefore,  the question is why is that difference and the

answer is because of electrical noise ok. You have got slight differences. Note that this

component right is not due to algorithmic noise because the in algorithm noise should

not defer because you are keeping the data same in both in all these cases. 
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So, therefore,  right  how does it  look like? So, therefore,  the total  power at  a time t

typically  has  got  two  important  components;  one  is  speed  data  which  is  the  power

consumed at time t due to the data dependent component and the other part is a noise

component. So, I am assuming that you are doing the same operation ok. So, in that case

right if there is no operation dependent component. 

But rather there is a data dependent component because the data is changing although

you are doing the same encryption again and again. So, and the other thing is the noise.

So,  this  noise  essentially  you  can  see  that  say  you  know like  essentially  has  got  a

Gaussian distribution and because of which right the power consumption also takes the

Gaussian shape. So, for example, here we plot the point the power trace at a specific

instant of time. So, essentially we see that you know like ah. So, in this case for example,

this adjacent histogram shows the distribution of total power at a given instance of time

for say 1000 encryptions with the same input and key ok.

And you can observe that the normal distribution is quite evident right you see that there

is a nice normal distribution which where you can fit your histogram ok. So, we this is

the histogram the green bars are the histograms and we have fit in a normal distribution

to it. So, this normal distribution shows the distribution of electrical noise and just to

recapitulate this is how a normal distribution looks like. This is a density function for the

normal  distribution.  Now,  the  density  function  describes  the  describing  the  normal

distribution  depends upon the  parameters  mu and sigma;  the  mean and the  standard

deviation. Of course, the mean can be anything between minus infinity to plus infinity

and a sigma is essentially greater than 0 ok.

And you can write the usual way of saying that x follows a normal distribution is by

using this notation and n and the parameters are mu and sigma and if you say so, then it

implies that your density function fx right is essentially given by this equation ok. That is

1 by root over 2 pi sigma in the denominator exponentiation; 1 to the power of e to the

power of minus 1 by 2 x minus mu by sigma whole square ok. If mu is 0 and sigma is 1;

then  we  call  this  as  a  standard  normal  distribution  and  the  cumulative  distribution

function of the standard normal distribution is denoted as phi x; that means, like if I

integrate for example, and I try to find out you know like the entire say suppose I draw a

specific I draw a straight line here which is for a specific value of x and I try to find out

basically add up all of them you know like till that value x right.



Then essentially I get the cumulative value and that distribution is often denoted as by

the notation phi x. So, the points in the power trace follows a normal distribution and the

normal distribution is also called as the Gaussian distribution ok. So, we can also use

these words interchangeably. We can say sometimes Normal distribution  and we can

sometimes say Gaussian distribution. So, now, what is the Sampling distribution?
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So, the average value and the standard deviation, suppose I am trying to estimate them

ok; that means, I am basically say you know like getting 1 sample, 2 sample, 3 samples

and I am trying to kind of estimate the corresponding average value and just and also the

standard  deviation.  Now,  this  would  change  every  time  right,  you  are  doing  the

experiment or redoing the experiment, these values will differ. 

So, you can view them the average and the empirical standard deviations; therefore, as

random variables.  And  the  mean  value  and  the  empirical  standard  deviation  can  be

characterized  again  as  a  probability  distribution  ok.  So,  that  means  and  this  is  this

concept  is  what  is  called  as  a  sampling  distribution.  So,  the  sampling  distribution

determines often how well a certain parameter can be estimated. So, we try to develop

sampling distributions for say mean. 
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And then, write the sampling distribution for mean would probably look it would look

like  this  like  suppose  in  a  case  of  average  the  value  X  bar  which  is  a  sampling

distribution in this case I determines how well the average value estimates mu ok. So, we

know that if I take large number of samples, then by the law of large numbers this will

tend to mu. But of course, with finite values, it will not be exactly mu. But it will start

approaching mu. So, the sampling distribution of X bar is a normal distribution and it is

denoted as X bar follows normal distribution with the mean same as mu.

But the variance becomes sigma by square root of n. These also shows that when you are

increasing the value of n; then sigma by square root of n is getting smaller and smaller;

that means, you are basically approaching the average value is getting close to the mean

value  with more  and more measurements;  with more and more observations  ok.  So,

therefore, right for normal distributed values, we know that the average is a very good

estimator for mu and with more traces they are more trace estimations becomes better

and the average value is tending more towards the object you know towards the value of

mu ok. 
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So, now another important concept which is required to understand the you know like the

following  concepts  is  essentially  what  is  called  as  the  Confidence  Interval  and

Hypothesis Testing ok. So, the quantity basically says how close a certain approximation

is  to  a  real  parameter  is  often  defined  by  confidence  intervals.  See  this  is  a  very

important concept because when we are doing a difference of mean attack, we need to

predict  the  mean  right.  So,  therefore,  this  is  the  parameter  which  you  are  trying  to

estimate, but then the question would be how many observations you need to estimate it

with the high confidence and that is where this concept of confidence interval comes in.

Because it tells us that it basically is a quantity or defines a quantity which tells how

close a certain approximation is to a real parameter ok. So, when we say for example,

that we have got a 0.99 confidence interval for mu, we mean to say that we have an

interval that contains mu with the probability of 0.99 ok. That means, we have been we

are saying that there is an interval which kind of engulfs mu with a high probability and

hypothesis testing is a statistical tool to define this confidence interval ok. So, in such

tests what we do is as follows. We basically test whether we basically make a hypothesis

ok.

So, hypothesis would be essentially a claim about the parameter or parameters and for

example, we want to you know like test whether mu is equal to mu 0 or whether mu is

not equal to mu 0. So, what we do is that we basically make 2 hypotheses; one is a null



hypothesis denoted as H 0; writing as described as mu equal to mu 0 and there is an

Alternative Hypothesis which is mu is not equal to mu 0 ok. 

An important  point which can be mentioned here is  that  the null  and the alternative

hypothesis  although  in  this  example  are  complementary  ok,  it  need  not  be

complementary.  They  are  not  necessarily  complementary;  that  means  they  are  not

necessarily  exhaustive.  But  they  are  exclusive  ok;  that  means  they  are  mutually

independent. They are they are different; I mean they are rather than saying independent;

it is better to say that they are exclusive. 
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So, now so let us take our example.  So, this is our power trace for example. So, we

basically had we have basically feed that if you did that into a normal distribution and we

would like to convert this into a standard normal distribution and I say that in a standard

normal distribution, you have got the mean as 0 and the standard deviation right or sigma

essentially as 1 ok. Therefore, the normal distribution is 0 comma 1. 

So, now the usual way of transforming that is that suppose you have got the sampling

distribution for mean denoted as mu comma sigma by root n as we have seen in the

previous slide, we will make a transformation from X bar. So, we basically substitute X

bar as X bar minus mu into square root of n by sigma. If you do this transformation, then

you get Z and this Z essentially will follow a standard normal distribution which means it

will follow n with mean as 0 and standard deviation or sigma as 1. 
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So, now we would like to develop or find out the characteristic of a standard normal

distribution which we will be using in our hypothesis testing. So, this is the standard

normal distribution curve. Now this particular curve has got some important properties

ok.  These  properties  are  typically  right  essentially  very  important  and central  to  the

understanding  of  hypothesis  testing  and  they  are  essentially  described  by something

which is called as Z alpha or what are called as Quantiles ok.

So, let us see what they mean the idea is that if you take the area under the curve, the

area under the curve would be essentially 1 or unity and here, you will see that there is

there are certain notations which are called as Z alpha and as I said the cumulative value

which is essentially phi of Z alpha indicates the probability that the Z statistics takes a

value which is less than or equal to Z alpha. 

So, P Z less than equal to Z alpha is nothing but phi of Z alpha and that is equal to alpha

in this in this particular curve and also note that Z alpha is equal to minus of Z 1 minus

alpha because it is kind of symmetric over the 0 well ok. So, this is the 0 line because the

mean is in this case 0. So, we have got Z alpha equal to minus of Z 1 minus alpha ok.

So, this you can easily check from the normal distribution curves ok. And so now, that

that implies that if I take a region from Z alpha by 2 to Z 1 minus alpha by 2; then the

probability that Z will lie from Z alpha by 2 to Z 1 minus alpha by 2 is equal to 1 minus

alpha, that is because if you take Z 1 minus alpha by 2; then a probability that it is less



than Z 1 minus alpha by 2 is;  so for example,  right you would take alpha by 2, the

probability that it is less than Z alpha by 2 is alpha by 2 ok.

And as we know that from here Z alpha by 2 is equal to minus of Z 1 minus alpha by 2

and by the symmetricity we know that the probability that it  is greater than Z and 1

minus alpha by 2 is also alpha by 2 and as I said that since the area under the curve is 1;

that means, the probability that Z will lie in this region that is from Z alpha by 2 to Z 1

minus alpha by 2 is nothing but 1 minus alpha by 2 plus alpha by 2 that is 1 minus alpha.

So, therefore right what we will see why there is a reason why we call alpha as the error

probability, I will explain very soon why. But you can, but rather let me state here that

this region or this closed region from Z alpha by 2 to Z 1 minus alpha by 2 is called the

confidence interval of Z with a confidence of 1 minus alpha ok. So, now, this is this you

know like the statistics of or the properties of this standard normal distribution is often

described by a table ok. So, here is a small summary of the table, but there are more data

that you can easily get from a bigger table. 

For example, like if I take alpha and if the alpha value is 0.975 for example, then the

corresponding  Z  alpha  is  1.960.  So,  I  hope  now we  understand  that  what  it  means

because this follows from this fact that is P Z less than equal to Z alpha; that means, if I

take a value of alpha like 0.975; that is 0.975 somewhere here, then the you know like

that. 

So, this if this is your. So, if your Z alpha is for example, 1.960, then I would basically

draw a line here through this point that is 1.960 and that would imply that the probability

that Z is lesser than this; that is it lies on the left hand side is given by this value which is

denoted by alpha ok. So, for example, the alpha value is 0.975 ok. So, therefore, the

quantiles essentially defines this probability distribution and which we will be using in

our hypothesis testing shortly. 
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So,  let  us  try  to  define  now the  confidence  interval  for  mu which  we are  trying  to

estimate. So, as I said that Z essentially follows a standard normal distribution curve,

where Z is equal to x bar minus mu into root n by sigma. So, that would imply that we

are basically trying to limit Z between Z alpha by 2 and Z 1 minus alpha by 2 right that is

the  confidence  interval  that  we just  now saw here  ok.  So,  now, using  this  right  we

basically write this equation and that implies that I can now you know like do a few

simplification I can multiply both these sides by sigma by root n. 

Therefore, I have got sigma by root n Z alpha by 2 which is less than equal to x bar

minus mu is less than equal to sigma by root n into Z 1 minus alpha by 2 and again right.

Since I want the confidence interval for mu, I bring in I do a little bit of maneuvering and

therefore, I see that mu is bounded between X bar minus sigma by root n Z alpha by 2

and it is also lower bounded by X bar minus sigma by root n Z 1 minus alpha by 2 ok.

Now, note that Z alpha by 2 is nothing but minus Z 1 minus alpha by 2. 

So, therefore, I can replace this error for by 2 by minus of Z 1 minus alpha by 2 and

therefore, I get that mu is bounded between X bar minus X bar plus minus sigma by

square root of n Z 1 minus alpha by 2. So, therefore, my confidence interval for mu with

the confidence of 1 minus alpha would be X bar minus sigma by square root of n Z 1

minus alpha by 2 to X bar plus sigma by square root of n Z 1 minus alpha by 2.
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So, now once we have derived this confidence interval, we are all set to understand what

is hypothesis testing. So, as I said that if you want to test that whether mu equals to mu

naught or not or whether mu is equal to mu naught or mu is not equal to mu naught, you

make 2 hypotheses. So, you state two hypotheses the null hypothesis is that mu is equal

to mu naught and the alternative hypothesis or H 1 is mu is not equal to mu mu 0. So,

now, we estimate mu by calculating the average value X bar because we do not know

what is the actual of mu.

So, now, the idea is that if X bar minus mu naught ok; mu naught is the value that you

are trying to see whether mu is equal to that and if you find out that this empirical mean

right; that means, the absolute value of this error is much larger than some predefined

constant.  So,  this  predefined  constant  is  often  given beforehand  depending upon the

accuracy or precision that is required, then we will reject H 0. Because that means, that it

is too big; then allowed ok, then possibly and that possibly means that x bar is not mu

naught ok.

Or I mean rather mu mu is not equal to mu naught. Else that means, if it lies inside this

region, then we accept H naught. We accept the null hypothesis. So, this constant is vital

again  and  it  defines  what  is  called  as  a  critical  region,  the  region  where  the  null

hypothesis is rejected because if it lies in this region it is much larger than this constant c

then and it lies in that region, then you are basically rejecting the null hypothesis ok. 
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So,  therefore,  right  this  brings  us  to  the  fact  why  alpha  is  called  as  an  Error.  You

remember why it called alpha as an error. So, it is because of this fact that it basically is

nothing but the false positive error. So, it may happen that the null hypothesis is true, but

we reject it and this is called as a False Positive Error. Mathematically the probability of

this event is nothing but P X bar minus mu naught absolute value greater than c and that

is equal to alpha. 

So, that is why alpha is called as an error probability and what we want often is that we

will try to reduce this error probability and if we do that, then that implies that 1 minus

alpha  will  get  increased  and therefore,  the  confidence  will  get  increased  and that  is

intuitive; that is why you are reducing error and you are increasing your confidence of

estimate and that is understood. So, therefore, if alpha reduces then confidence increases.
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So, now we are all set to understand or estimate the number of traces to estimate mu ok.

Suppose, we need to estimate the mean with a precision say 0.01 ok. So, say P of; so, I

say that P of mod X bar minus mu naught is greater than c, this is equal to alpha; this is

our error probability. Ordinarily that means, that probability that X bar minus mu naught

is greater than c you can also write that by multiplying both sides by root n by root n by

sigma. Note that sigma is positive. 

So, you can multiply them without changing the sign and this is nothing but your Z right

or the absolute value of Z which is your Z statistic.  Now, the absolute value of Z is

basically greater than c square root of n by sigma and this means that this probability

right if we just remove this absolute sign, then that means, that this is nothing but 2 into

probability of Z greater than equal to c square root of n by sigma and that is equal to

alpha. So, this is an important thing to understand. So, so I hope that it is clear. So, let me

try here to explain this point.

So, basically what I am trying to say is that this is your normal curve right and you are

basically trying to say that when you are saying that mod Z is greater than this parameter,

then that means, you are bothered about the absolute value of Z being greater than this

ok. So that means, you are basically bothered about both these regions; this region as

well as this region. Because the absolute value is important because when, but when you



are writing this fact that is Z is greater than this we are only writing this region. So, in

order to account for that, you basically bring in this factor of 2 ok.

So, you bring in this factor of two and therefore, write P Z greater than c square root of n

by sigma is equal to alpha by 2 and that implies that this is nothing but Z 1 minus alpha

by 2 ok. Remember right that this essentially as I say that if this is Z 1 minus alpha by 2,

then  the probability  that  it  is  greater  than this  was shown to be alpha  by 2 ok.  So,

therefore, right we can essentially write that this parameter that is c square root of n by

sigma is nothing and equated nothing but Z 1 minus alpha by 2 and this immediately tells

me that n is equal to sigma square by c square into Z 1 minus alpha by 2 whole square

ok. So, gives me a closed form expression of estimating the number of traces which are

required to estimate the value of mu.

So, what we will see next is we will see few more you know like inferences on this and

try to see how we can apply this on you know like on getting the difference of mean

attack analyzed in a much more predictable fashion, but we will take that in the next

class.


