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So,  welcome  to  this  class  on  Hardware  Security.  So,  we  shall  be  continuing  our

discussions on Elliptic Curve Cryptographic hardware design.

(Refer Slide Time: 00:23)

In particular today we shall we try to look into more details about the hardware that we

started discussing in the last class. So, we shall we starting to look into the ALU design

that is Arithmetic Logic Unit design. We shall be trying to take a more detail look into

the control unit design and the final inversion along with quick discussion on the top

level scalar multiplication and also how to verify the design that this methodology that

we adopted for in our case.
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So, this  is  the quick recompilation  of the projective point  arithmetic.  So,  as we said

already that the projective point arithmetic was introduced to reduce the number of costly

inversions which are required in the underline finite field operations.

So, here are some equations on the point doubling; that means, when you are trying to

double a point on the elliptic curve in projective coordinates. As you can see right that

there are some multiplications which are involved in this step and in our design right if

you remember that data path, we had a constraint of having only one multiplier.

So, therefore right we have to basically try to kind of multiply or essentially perform our

operations with one multiplication at a time. So, our strategy will be that we will be

ensuring  that  one  multiplication  is  at  least  used  every  clock  cycle;  that  means,  the

multiplier is not sitting idle in any clock cycle. So, this is just to reduce the number of

clock cycles. So, in this case for example, we can see that if I schedule the operations ok;

so one of the important steps that we need to kind of look into is how do you schedule

this operation?

That means, how do you do this operation step by step. So, in this case we require 4 time

steps to do the operation ok. And here are the corresponding steps which are detailed; so

these are essentially nothing, but; so this algorithm is nothing, but essentially a depiction

of how these steps would be performed.
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So, more details look into this can be seen here in context with our data path for the

arithmetic unit. So, you can see here that if you are interested to like for example, do

these steps like.

Suppose these are the individual you know like successive 4 clock cycles clock 1, clock

2, clock 3 and clock 4. So, you see that in our arithmetic unit there are 2 output ports C 0

and C 1 this is for parallelism. So, we are trying to extract as much parallelisive as we

can ok; given the constraint that we have got one multiplication or one multiplier.

So,  here  therefore,  right  when  you  are  doing  say  R  say  when  you  are  doing  this

computation  like  R  A 1  square  into  RC 1  square.  So,  you  are  basically  doing  you

occupying your multiplier, but at the same time you can see there in my data path. There

are some other peripheral circuits like addition, squaring and like when 2 squarings are

successive then you can also raise an element to an power of 4 ok.

So, therefore, these kinds of computations are kept so that you can essentially do it very

much independent of the multiplier ok. And they are also less in terms of cost; so you

can essentially provide dedicated support for them ok. So, you have to basically plane

this entire circuit. So, essentially the cracks of the design lies in how you can know like

nicely develop an architecture ok.



So, so that essentially is a sort of thing that we only gather out of trying few examples or

through  experience.  But  you  can  essentially  get  sudden  you  know  you  can  try  to

understand the relationship between the operation that we need to do and the final circuit

that we have at hand.

So, let me try to detail for example, like an at least try to understand how to read these

tables basically ok. So, you can see that there is in this table basically detail the input and

output of the register file for point doubling. Because the register file as we discussed

yesterday works hand in hand with your arithmetic unit ok.

So, the arithmetic units basically receive some inputs from the register file; does some

computation and the result is again stored back in the register file. So; that means, C 0

and C 1 and Q out that again stored back into the register file. So, if you see here the

register file produces the register file had outputs like A 0, A 1, A 2 and A 3 ok. And it

produces A 0 and A 1 in these 2 buses it floats a data of R A 1 and RC 1 ok.

So, now R A 1 and RC 1 are essentially the first registers of the first and the third register

banks. So, R A 1 stores the value of X 1 and RC 1 and actually R A 1 stores the you

know. So, R A 1 stores the coordinate X 1 and RC 1 stores the coordinate Z 1.

So; that means, it is basically what you are doing now is that when you are when you

want to see multiply R A 1 square into RC 1 square; that means, this multiplier should

receive through this multiplexer the inputs A 0 square and A 1 square basically ok. So,

therefore, A 0 1 square and A 1 square should be passed in as an input; the multiplier will

develop this result and if you see this output right needs to be multiplex out ok. 

So, I will again come back to this when we talk about the control path or the control

signals. But this is something that we need to do and this steering of information or data

should be done by the control logic ok. That means the select lines of the multiplexers

will be switched accordingly to the; our control logic.

And therefore,  right  we essentially  have  a  clean  separation  of  the  data  path  and the

control path which is desirable in any good architecture design. So, finally, right we have

got this result; that means, for example, we calculate say; you know like X 1 square into

Z 1 square.  This  is  essentially  performance of  this  step and in  parallel  you are also

performing RC 1 to the power of 4; so that stands for Z 1 to the power of 4 ok.



So, therefore, right we have also calculating ah; if I may write you know like that you are

also calculating RC 1 to the power of 4. And that is essentially nothing, but this operation

that is Z 1 to the power of 4 ok. And this operation is essentially this operation that is X 1

square into Z 1 square. So, you see that these 2 things are performed in the same clock

cycle in this architecture.

Likewise right in the next clock cycle we perform this computation that is RB 3 into RB

4. So, RB 3 is nothing, but Z 1 to the power of 4 and if you remember RB 4 was used to

store the curve constant B ok. So; that means, B into Z 1 to the power of 4 is performed

in this computation. And B Z 1 to the power of 4 is there in few other places also; so

therefore this result is ready with us in RB 3.

So, in the next clock cycle we basically kind of calculate this part that is we basically

you know like in the first; in the in this in this computation we perform this part that is

we add remember that A is 1; so we basically add Z 4 with Y 1 square with B Z 1 to the

power of 4. So, B Z 1 to the power of 4 is already ready in RB 3 ok. So, therefore, the

RB 3 essentially stores the value of B Z 1 to the power of 4. You add that with RB 1

square; so RB 1 square is nothing, but your Y 1 square and A Z 1 to the power 4; A being

1 is equal to Z 4 ok. So, therefore, this result is already ready with us and essentially this

is stored in RC 1 ok.

So, so therefore, right you essentially have these 3 things ready and the other part is

again you know like this part that is R A 1 to the power of 4 plus RB 3 ok. So, this is

essentially trying to basically compute this part. So, therefore, essentially this nothing,

but raising X 1 to the power of 4 and adding that with RB 3.

So, therefore, in the final clock cycle you just need to add this component. So, therefore,

you need to add this component with this result ok. So, remember that we already had

this RC 2 ready in the previous clock cycle; so we just add RB 3 into RC 1. So, RB 3

into RC 1 stands for this part of the computation because you already have RB 3 storing

B Z 1 to the power of 4; you multiply with this component to get this part ok.

So, therefore, this pretty much kind of explain how the 4 clock cycles work and you

essentially  perform the doubling operation.  So, I  did not you know like derive these

equations in the Lopez Dahab coordinates, but I leave it you as an exercise to do this to

do this calculation. Rather I will be trying to you know like explain how the addition



works,  because  that  is  slightly  more  complicated  and  we  will  try  to  see  how  the

equations work in that case.
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So, these are my projective point addition operations and essentially this looks little bit

more complex than the doubling equations ok. So, we will try to take a look into that

derivation.

So, let me try to explain that and so therefore, right if you remember the original affine

coordinate equations.

(Refer Slide Time: 09:23)



So, the original affine coordinate equations where as follows you have x 3 which is equal

to; so I will write or use lambda to store the slope in this case. So, lambda square plus

lambda plus x 1 plus x 2 plus a ok. So, and likewise y 3 was equal to lambda into x 3

plus x 1 plus y 1 plus x 3 and lambda is the slope. So, in this case it is y 2 plus y 1;

remember it is in characteristic 2; so divided by x 2 plus x 1 ok.

So, now for projective coordinates we will make this. So, remember it is a Lopez Dahab

projective coordinates they are different projective coordinates. So, we will be using the

Lopez Dahab projective coordinates; where small x 1 is mapped into capital X 1 by Z 1

and x 3 is mapped into capital X 3 by Z 3. And small y 1 is mapped into Y 1 by Z 1

square and small y 3 is mapped into Y 3 by Z 3 square. 

So, now with this replacements or substitutions; you can again look into the value of

lambda. So, lambda is now equal to; so remember what we will do is that, we will do this

operation  in  affine  coordinates  ok.  So,  I  will  be  keeping  y  2  as  it  is.  So,  y  2  will

remember remain in is affine coordinates rather this operation is done in mix coordinates.

So, the y 2 is remaining in affine coordinates and the other one will be in projective

coordinate.

So, we will write y 2 plus Y 1 by Z 1 square divided by x 2 plus X 1 by Z 1 ok. So, that

turns out to with little bit of you know like simplifications y 2 Z 1 square plus capital Y 1

divided by Z 1 into x 2 Z 1 plus capital X 1.

So, therefore, right we will write here that let A hold the value of y 2 Z 1 square plus Y 1

and B hold x 2 Z 1 plus X 1. And let us C hold Z 1 B ok; so let us C hold Z 1 B. So, in

that case therefore, lambda becomes nothing, but A divided by Z 1 B; A divided by Z 1 B

ok.

So, therefore, right with this derivation we have got x 3; small x 3 equal to capital X 3

divided by Z 3 right. So, that is equal to ah; so we have basically having this equation for

x 3. So, we are basically trying to calculate the value of x 3, but remember that x 3 is

equal to lambda square plus lambda plus x 1 plus x 2 plus a. So, that is essentially given

by this formula.

So, we basically can write now therefore, using this value of lambda because remember

this is my expression for lambda. So, I can write this as A divided by B Z 1 square plus A



divided by B Z 1 ok; plus X 1 by Z 1 plus X 2 plus a. Remember x 2 for small x 2

remains in the affine coordinates.

So, therefore this essentially is nothing, but B Z 1 whole square in the denominator. The

numerator is A square plus A B Z 1 plus B square X 1; Z 1 plus B square small x 2 Z 1

square plus a B square Z 1 square. So, therefore, what we will say is at Z 3; this implies

that since x 3 is equal to X 3 by Z 3; Z 3 is equal to B Z 1 whole square and that is equal

to also C square because C is Z 1 B ok.

And capital X 3 is equal to A square plus ABZ 1 ok; this we can write as AC because C is

Z 1 B. So, A square plus AC plus B square X 1; Z 1 plus B square small x 2 Z 1 square

plus a B square Z 1 square. And that is equal to again A square plus AC plus see I can

take B square common from all sides this.

So, I can write this as B square X 1 Z 1; so actually I can probably you know like right

this also as I can take Z 1 common and I can write X 1 plus x 2 Z 1 plus a Z 1 square ok.

And this I can write again as A square plus AC plus B square Z 1 B. Because see that this

part  is nothing, but already B which is essentially  as written here ok. So, this is my

capital B; so I can write this is B square into Z 1 B plus a Z 1 square ok.

So, therefore, right I mean we have more or less compact equation and we have to kind

of remember that these are all the intermediate steps which you are calculating when you

are doing your addition operation ok. So, likewise you can derive the equation for y 3 ok;

so and you can again do that. So, I will try to you know like derive the equation for y 3.

So, one thing we can observe that what I can also do few more substitutions here just to

for example, this AC; I can write as say you know like E is equal to AC E equal to AC.

And D is equal to B square Z 1 B plus a Z 1 square ok. So, if I write this then X 3

becomes equal to A square plus E plus D right; this is a more compact expression for X

3.

Likewise you can derive for y 3 ok; so let us do this after this. So, I will be clearing this

part and again looking into how to derive for y 3.
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So, y 3 is; so is equal to Y capital Y 3 divided by Z 3 square and that is equal to A by Z;

Z 1 B. So, divided into X 1 by Z 1 plus X 3 by Z 3 plus X 3 by Z 3 plus Y 1 by Z 1

square. So, this actually follows from the equation of y 3. So, if you remember that y 3

was equal to lambda into x 3 plus x 1 plus y 1 plus small x 3 ok.

So, now you are transforming them into the projective domain and using the value of

lambda and the other things that we already saw. So, you can essentially write y 3 in this

form and therefore, right you can again do a similar thing that we did for x 3; you can

write the denominator as you know like.

So, this is a nothing, but writing the denominator as Z 3 square and so, Z 3 square. And

then writing this as AB cube; X 1 Z 1 square plus AB X 3 Z 1 plus X 3 Z 3 plus B to the

power of 4 Y 1 Z 1 square right.

So,; so therefore, right I mean if you have these components then now you can write

therefore, Y 3 as AB cube; X 1 Z 1 square plus AB; X 3 Z 1 plus X 3; Z 3 plus B to the

power of 4 Y 1 Z 1 square ok. So, now, note that we already had this in the previous

derivations that capital X 1 was equal to B plus x 2 Z 1 and E was equal to AB Z 1 and

also that Z 3 was equal to B Z 1 whole square ok.



So, therefore, write Y 3 is equal to A B to the power of 4 Z 1 square plus E small x 2; Z 3

plus capital E X 3, capital E X 3 plus capital X 3 Z 3 plus B to the power of 4; Y 1 Z 1

square ok.

So, this is just substituting this AB Z 1; we are substituting E here and we have got E X 3

because of that and the other term is you know like. So, that is E x is a E x 2 is Z 1 and

you also have got here this part. So, this part you are getting by from this equation; so

capital X 1 you can actually substitute as B plus x 2 Z 1 ok.

So, if you substitute B plus x 2 Z 1; then you will have B to the power; AB to the power

of 4 Z 1 square coming up as one part. And likewise; so you can just verify this that is if

I for example, write AB cube Z 1 square and instead of capital X 1 that is this part; I

write B 1 B plus x 2 Z 1, then I have got AB to the power of 4; Z 1 square plus AB cube.

And I have got AB cube; Z 1 to the power of 3 ok, so this part essentially right I mean

yeah. So, this part should get cancelled out right with your; with your second term right

that is this term. So, like we derive the steps for x 3 we will be deriving the equation for

y 3 in a similar manner ok.
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So, so if you remember right I mean the equation for y 3 that we had in the previous

previously when we stated equation for y 3, we had y 3 equal to lambda into x 3 plus x 1



plus y 1 plus x 3 ok. And we derive that lambda we wrote in a compact format was A by

Z 1 B ok.

And also we had you know like seen that Z 3 in the when we derive equation for X right

we are Z 3 equal to B square Z 1 square. So, therefore, right now we can write Y 3 in a

similar way we can write Y 3 in the projective coordinate as Y 3 divided by Z 3 square

and that is equal to A by Z 1 B into X 1 by Z 1 plus capital X 3 by Z 3 plus X 3 by Z 3.

So, that is from these term and plus Y 1 by Z 1 square; so that is from this term ok. So,

therefore now we essentially can break this I mean 2 parts. So, we can write this as A X 1

divided by Z 1 square B plus A X 3 divided by Z 1 Z 3 B plus X 3 by Z 3 plus Y 1 by Z 1

square.

So, now we can multiply the numerator denominator here Y B. And you see that if I do

that then I get B square Z 1 square and that is equal to Z 3 ok. So therefore, I can write

the denominator as Z 3 and that means, that I have multiplied the numerator also by B;

so that I have got A X 1 B; plus I have got A X 3 and I multiply again the numerator and

the denominator by in this case Z 1 B ok.

So, if I multiplied by Z 1 B; then I have got Z 1 B whole square in the denominator. And

Z 1 B whole square means Z 3; so I have got another Z 3. So, this becomes Z 3 square

plus again I multiply X 3 Z 3 by and I get Z 3 square here plus Y 1; B B square and this

become Z 1 B 0. So, that is again equal to Z 3.

So,  now  we  can  take  Z  3  square  in  the  denominator  and  therefore,  the  numerator

becomes AX 1 B Z 3 plus AX 3; Z 1 B this does not change plus X 3 Z 3; this also does

not change. This becomes multiplied with Z 3; Y 1 B square Z 3.

And that is equal to if I write in the numerator again remember that I have got Z 3 as

equal to B square Z 1. So, if I plug that back then I have got A X 1 and A X. So, if I just

plug plug in back Z 3 as B square Z 1 then I have got A; I can write here this part as A B

to the power of 3 Z 1 square X 1 ok. 

So, just writing the X 1 the end plus A B X 3 Z 1 plus this part again if I bring in. So, this

part let me write as X 3 Z 3 and for this part I have got; if I bringing and substitute in

place of 3 B square Z 1; then I have got B to the power of 4 Y 1 Z 1 square divided by Z



3 square. So, therefore, right I have got I have got this numerator right essentially is

nothing, but is essentially Y 3; so, this is my equation for Y 3 ok.

So, so let me just use it and try to see that whether we can; let us try to simplify this

equation and for that I will be using another sorry. So, let me just clean this; 1 second .

So, let me just clean this up and write it has clean the equation.
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So, we have got Y 3 is equal to AB cube X 1; Z 1 square ok. So, AB cube X 1 Z 1 square

plus AB X 3 Z 1 plus X 3; Z 3 plus B to the power of 4 Y 1 Z 1 square ok. 

So, now we will make few substitutions. So, for example, note that X 1 or capital X 1 is

equal to B plus x 2 Z 1 and E is equal to a B Z 1 E equal to AB Z 1. And we also have as

already we noted that Z 3 is equal to B Z 1 whole square ok.

So, therefore, right Y 3 is equal to if I do this then Y 3 is equal to A B to the power of 3

AB to the power of 3 Z 1 square and I instead of X 1; I can write B plus X 2 Z 1 plus

plus E; capital X 3 plus X 3, Z 3 plus B to the power of 4 Y 1, Z 1 square. And this is

equal to A: B to the power of 4 Z 1 square plus plus E X 2 Z 3 ok.

So, E X 2 X 3 because you know that Z 3 is equal to B squared Z 1 square. So, therefore,

you can get it from here and you can also plug in E equal to a B Z 1 ok. So, you will get

E X 2 Z 3 plus E X 3 plus X 3 Z 3 plus B to the power of 4 Y 1 Z 1 square. And that



again you can write as this you can; you can write this as y 2 Z 1 square plus Y 1; B to

the power of 4 Z 1 square being taken common ok.

So, so that essentially comes from the equation that we have for A and this plus E x 2 Z 3

plus E X 3 plus X 3 Z 3 plus B to the power of 4 Z 1 square Y 1. So, this becomes equal

to y 2 Z 3 square plus E X 2 Z 3 plus E X 3 plus X 3 Z 3 ok. So, so this essentially right I

mean you can see that B to the power of 4 Z 1 square and Y 1 square. So, these 2 term

cancels of and this is essentially the term that I have finally.

So, then I can also right few are few more substitutions like say G is equal to x 2 plus y 2

into Z 3 square and F is equal to X 3 plus x 2 Z 3. With this I can write therefore, that Y 3

is equal to G plus X 2 Z 3 square plus E x 2 Z 3 plus E X 3 plus X 3 Z 3 and that is equal

to G plus F into E plus Z 3 ok.

So, that gives you the final equation for Y 3. So, we already had X 3, we had Z 3 and

now we also can calculate Y 3. So, we are basically all the components for the addition

equation. So, now let us get back to the you know like slide and try to see that whether

these are the equation. So, this essentially the starting from the bottom; so, you can see

that this is your Y 3 equation; there is exactly what we define here ok. So, E plus Z 3 into

F plus G ok.

Likewise we already had Z 3 as C square and also you can verify the other equations step

by step essentially it tallies with our derivation.

So, therefore, we have now equations now once we have this equations right; we have to

see like how many clock cycles are required given the constant that we have got one

multiplier. It turns out that in this case we require if you do at scheduling right.
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We require 8 clock cycles to perform this operation compared to your doubling where

you at 4 clock cycle requirements. So, here you can see again you know you can verify

that if I have got 2 outputs in parallel which I can produce. So, every clock cycle I am

using one multiplication; the multiplied is always used in every clock cycle.

So, you can see that every time it is used the other component or other output is often

used to do peripheral computations ok. So, in that case you have got 8 time steps which

are required.

(Refer Slide Time: 32:31)



So, let us take a look at the control unit, in the control unit we will see that we basically

have got you know like the data flow essentially the right for doing the entire scalar

multiplication, we will have 4 distinct parts ok.

The first part will be the initialization part where initialize your like the base points and

the constants for the curve. In the second part you do the doubling operation depending

upon doubling you always do. So, doubling you expand like 4 clock cycles so that are

shown by this  blue  circles  and that  is  followed by the  8;  8  clock cycles  which  are

required for doing addition operations ok, but this is conditional in this architecture ok.

Later  on  we  will  see  it  is  not  a  very  secured  way  of  doing  it,  but  at  least  from

performance point of view this looks fine. So, you do basically 8 take 8 clock cycles for

doing the addition. And once you have done all these things right then done or process

the entire scalar; you go for the final result where you get the affine coordinates and you

get back the ultimate result and for that you do an inversion.

So, that essentially shown by these brown circles and for the inversion we will see that

you have got 24 clock cycle requirements ok. That it is done by the Ethos Uzi inversion

algorithm. So, these are the different components for doing the operation; so, you have

got various steps.
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So, let us try to see at least how to read the control logic ok; I will not go into too more

details about that, but rather leave to you as an exercise. But you can see that pretty much

you essentially have got all the components which are required. So, let us explain the

control unit which is the essentially the you know the centered stone of the architecture.

So, the control unit has got 4 distinct parts; so that is showed by this FSM or Finite State

Machine

So, you can see that I have got at we have drawn like the use in the green colour; we

have written the initialization portion where you load the initial curve constants and the

initial base point. Followed by the operation which is shown by the blue circles and the

doubling is done always.

But that either of 4 clock cycles we are require for doubling because of the reason that I

said. And subsequently right you have got 8 clock cycles required for doing the addition

operation and the addition is done conditionally in this architecture. Later on we will see

that is not a very secured way of implementing things for at least from performance point

of view this looks fine. And then that is the final step of inversion where you get the final

result; you bring the result back from the projective to the affine coordinates and also get

the result.

So, therefore this is shown here in the brown line and there are transfer to be 24 clock

cycles which are required when you are doing Ethos Uzi inversion algorithm or implying

the ethos uzi inversion algorithm as we have studied previously. So, here snapshot of the

of the control logic; you can see that there are 3 initial blocks cycles, there are 4 you

know like the doubling steps and there are like 8 addition steps ok.

So, let us see how the control logic is decided; so with this example. So, for this you

have to see or keep in perspective the entire data path. So, here we show first of all in

this cycle we in this the architecture; we show the register file and this is the arithmetic

unique  ok.  And  then  these  are  the  corresponding  control  words  and  also  the

corresponding logic for doing the computations ok. 

So, let us try to take some examples like for example, the initialization block ok. If you

take the initialization block and in that case you will see and I am in particular I am

concentrating on the second register file. So, you will see that the second register file is

stored or storing the essentially the; is processing on the Y coordinates ok. So, so if you



observe the steps here then you get RB 1 equal to P Y; in the second clock cycle you do

RB 2 equal to P Y ok. So, therefore, that means, you are here you are writing into RB 1,

here you are writing into RB 2 ok.

So, now if you see the logic here; that means, when you are wanting to write into RB 1.

So, in when you are say as I said that the first address or address 1 is used to choose the

write  address and address 2 is  used to  choose the read address  ok.  So, address 1 is

essentially control by C 14 and C 13 and the read and write is stored by C 16 and C 16

and C 15.

So, that is shown here by this small think and if you can observe here; then you can see

that the corresponding control initially write is essentially C 14 and C 13 and that shows

0 0 ok. If it shows 0 0; that means, you are basically writing into the first register here

that is RB 1 and that is exactly what you are doing in the equation.

In the second clock cycle you are writing into RB 2 and that is; that means, that this

control should be changed into 0 1 and that is what is done here ok. And in the third step

you are basically writing into RB 4; so RB 4 should be 1 1 ok. So, that is what is done

here is 1 1, but in all these things right you can see that the read address is do not care

because you are not reading anything.

Likewise, if you see the doubling the first clock cycle for doubling; so in this case right

when you are doubling then the operation which were doing is R A 1 square into RC 1

square ok. So; that means, right the data has to be passed into the multiplier and; that

means, these select lines will become functional ok. So; that means, now if you see right

I am basically taking the input from R A 1; so, that is essentially stored here.

So, what I do is; I basically write and this is the corresponding control for MUX A and

MUX B. So, these are the 2 input multiplexers to the multiplier circuit. So, here I need to

choose therefore, if I want to multiply this I have to choose the corresponding. So, these

are the responding output results which have being generated from the arithmetic unit ok.

So, now you can see that what I want to multiply is R A 1 square into RC 1 square and

that is here essentially you are A 0 square and A 1 square ok. So, therefore, you will see

that the control logic here that is the MUX A and MUX B their select lines are 001 and

001.  So,  001 means  the  second line  of  the  multiplex  of  the  inputs  ok.  So,  you are



basically selecting if you can see the input is A 0 square and here it is A 1 square; so; that

means, A 0 is coming and A 1 is coming, they are getting squared by the square circuit in

the arithmetic unit and I am passing A 0 square and A 1 square to the multiplier.

So, the multiplier multiplies them and the result is ready in the bus M ok. So, this is the

corresponding bus M; where the result is stored. So, if you can observe right that this is

your final result where you are getting the output.

So, this output needs to be multiplex out. So, therefore, right; that means, this select line

should be set to 00 at that point ok. And that is precisely which is which is being done

here if you observe then; you will see that C 6 C 6 and C 7 and C 8 and C 9; that means,

these are the corresponding control logic. So, these 2 bits write are 0 0 here which means

that the multiplier is getting passed. So; that means, this output is getting computed and

getting passed out is getting is basically passed in C 0 bus; the other output is RC 1 to the

power of 4 which you need to pass 2 C 1 that is C 1 is this bus ok.

So, if you see the inputs here are out of them right A 1 to the power of 4; this input is

what I need basically and therefore, I need to pass this out as an output. So, therefore,

write 01 and 2; so therefore, this line needs to be made 1 0 and that is essentially done by

this control where you make it 1 and 0 ok. So, this kind of explains how you basically set

the control. So, that you basically configure and all these steps essentially are done in a

similar fashion which I leave it to you an exercise; you can verify each of these steps and

you can try to understand their correlations. 
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So, with this background right we now can go into are just at I will look into the verilog

code without going into too much details. So, this is nothing, but a depiction of how the

controller works in. So, you can see that this is the output logic because the control are

essentially generates an output which is nothing, but the control signal.

Now that depends upon 2 things; it depends upon typically on the state. So, essentially

you basically  of  the state;  so you have  basically  encoded all  the steps  in  states  and

depending upon the state you produce and control word ok. And control word is nothing,

but the binary value of these 1 0 configurations ok. So, that is essentially stored by this

funny looking x characters ok; this is nothing, but they are binary representations.

So, likewise you essentially can write for all of them like this is these are the initial parts;

these are the doubling parts and this is the corresponding addition states. So, all of them

their control logic has been created or model in the verilog code.
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The finally, finally, we have an inversion step because after you have done doubling

addition and the entire thing is ready; you need to do the inversion to get back the fine

results  ok.  So,  I  will  just  quickly  recapitulate  you  about  that  Ethos  Uzi  inversion

algorithm using the quad logic which we studied previously.

So, this is the quick flowchart about how this computation works in and if you remember

like I will just show you like one part. For example, this is the initial state stay where you

need to do A cube ok. So, in A cube basically I take the input, but remember I do not

have any cubing circuit, but I have got a squaring circuit. So, what I do is I take A 1 I

pass it just as it is here; I take A 1 and now I square it in pass it here A 1 square. I now

use this hybrid Karatsuba multiplier to do this multiplication ok.

So, therefore, right when I am multiplying this I have to choose the fifth block; fifth

input here and I have to again count 1, 2, 3, 4, and like so on; 0, 1, 2, 3, 4 and 5; so that is

the fifth inputs. So, it should be 1 0 1 and that is essentially exactly what is here.

So, therefore, if you observe this in this part it is 1 0 1 and the first part is 0 0 1; which

means it is the second input from here. So, you choosing the fifth input here and the

second input here and they are being multiplied by the multiplier. So, therefore you need

to again pass it through the output by accordingly choosing this control logic. 



So, that is exactly how these operations are done and finally, you get your result. So, you

can essentially perform all the successive steps in a similar fashion and get the entire

computation being done.
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So, likewise there is another step which we have shown here it is the final quading step;

where you see that in one step I do I raise something to the power of 4 to the power of 3

ok.

So, if you remember the quad block in the quad block there is a select input ok; the idea

is that if the select input is made 3; that means, if I made these 3 and if there is alpha this

output is alpha to the power of 4 power of 3 ok. So, therefore, right here what we do is

exactly that. So, you see the select value the select values is made 3 it is 0 0 1 and 1. So,

it becomes 3 and therefore, you calculate alpha to the power of 4 power of 3 ok. 

So therefore, right I mean that explains all the individual components. 
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And finally, right this is an example of how you can of the verilog program or the verilog

model for the quad block. So, you see that there is the select line and depending upon the

select line you have an internal quad block through which you calculate this.
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You can verify later on and if you see the quad block; just remember the architecture. So,

in this the verilog model we just place these quad circuits  one after the other. If you

remember that we had 14 cascade stages; so these are the 14 cascade power blocks which

have been placed.



All  of  them calculates  power  to  the  power  of  4  ok;  depending upon the  select  you

basically multiplex any one of them out. For example, if I want to you know like select

something intermediate then I can just choose one thing from the; for example, if I want

to calculate alpha to the power of 4 power of 3 right then; that means, that I have to

basically you know like take this; so this, so this is my alpha this becomes alpha to the

power of 4.

This becomes alpha to the power of 4 square, this becomes alpha to the power of 4

power of 3 and now I make this 3; so therefore, these gets selected out. So, I becomes

alpha to the power of 4 power of 3. So, now that exactly is essentially written here and

this is the final selection module; so which says that how you are essentially selecting.

So, therefore, if your select line is 3 then you basically select this line; which you can

implement easily through a multiplexer routine. So, finally, right I mean that essentially

explains pretty much the logic and essentially right.
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Finally this is your power 4 circuit which is exactly analogous to your squaring routine.

It also does the modular reduction in one go inside the inside this code ok. And you can

also  observe  that  the  entire  architecture  just  have  exhorts  because  power  of  4  in

characteristic 2 field is a linear operation. So, essentially you do not need any explicit

AND gets you can do the entire operation just by using exclusive powers.
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So, finally, you have got the scalar multiplier. So, in the scalar multiplier you have got

these essentially is the recapitulation of your double an add algorithm.
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So, how do you implement the state transitions? Again this is the recapitulation of your

final state machine. So, you can observe that the state transition that is the next state

logic can be easily observed or written in verilog by this always encapsulation.

So, what you can do is that depending upon your current state; you essentially depend

determine your next state ok. So, in all these entire thing it is pretty much that it goes



into the next state depending upon your current state; except for this key logic where you

have  a  jump  ok.  So,  that  essentially  if  this  part  where  you  have  a  conditional  key

statement and depending upon that from this clock cycle; I mean you either you know

like you know you do a doubling, but are you follow a doubling with a doubling are you

going to the addition step basically.

So, you either go from here to here or you go from here to here and that depends upon

your key bit.

(Refer Slide Time: 46:51)

So, so finally right when you make a complicated design you have to verify your design.

So, it is very important that you check that your result is correct; you should basically

verify  it  with  different  kind  of  implementation.  So,  typically  we  write  a  software

program and  then  we  verify  that  our  circuit  is  correct  with  respect  to  the  software

program.

In this case you can use this reference that we used from by a book by M. Rosing; it is

called the, is Implementation of Elliptic Curve Cryptography. And from there you can get

sudden references and if you look into it you can get an elliptic curve code on different

fields and you can verify your result with respect to it.
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So, finally, right to conclude this part these are some of the references that we have used

in particular this is a nice paper by Lopez and Dahab which was written in CHES in

1999. And there are some other interesting text also which I have kind of summarized

here. And this entire program; that means, the entire verilog code for the elliptic curve

processor; you can get in this link. So, you can just download this link and you know

looking more details about the; you know like about what we probably could not discuss

in the class.
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And these are again some of the references that we have used in particular; they are very

nice book on elliptic curves. And this is also very standard textbooks on elliptic curve

implementations an elliptic curve discussions. 
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You can also get into look into this book where this design is detailed in much more; you

know like in much more content. And these are all some nice books on elliptic curves for

example, this is also very nice book on elliptic curve which you can have a look into. 
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So, what we into conclude; what we discussed is about difference scalar multiplication

algorithms.  We discussed  about  an  LSB  first  verses  MSB  first  approaches  and  we

compared  them.  We discussed  the  Montgomery  ladder  for  scalar  multiplication;  we

discussed how to implement such ladders you without using the y coordinates explicitly.

We discussed on projective transformation on the ladder, we discussed on parallelization

techniques for the ladder, we discussed complete end to end implementation of an ECC

processor. So,  that  roughly takes us to the end of the; you know like discussions on

elliptic curve hardware.

So, in the next class we shall be try to see that performance is not the only factor; there

are many other things like security of implementations which we need to take care. So,

that will bring us to the topic of what we call as side channel attacks which we will try to

take of from the next class ok.

Thanks; thanks for your attention. 


