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So,  welcome  to  this  lecture  on  Hardware  Security.  So,  we  shall  be  continuing  our

discussions on Elliptic Curve Cryptography. In particular  today we shall be trying to

understand about how to parallelize the Montgomery ladder that we were discussing. So,

you will be discussing about some potential opportunities of parallelization. We shall be

following with the detailed description about how to design an electric curve processor.

So, we shall be looking into the overall architecture of an ECC processor.

(Refer Slide Time: 00:41)

We shall be trying to get into the various components of the architecture like the register

bank, the ALU, how the control unit would be designed and finally, the inversion, when

we convert back from the projective coordinates back to the affine coordinates. So, in

particular I will be not talking about a design based on the Montgomery trick that we

have seen, but rather this implementation will be on the plane you know like double and

add algorithm that is the initial knife double and add algorithm. But, using this idea you

can easily extend it to more to other variants of the elliptic curve processor.



(Refer Slide Time: 01:19)

So, so let us look start in that case. So, this is the ECC hierarchy that we were discussing.

So, as we discussed there are different levels of the elliptic curve operations. So, the

overall  objective  or  overall  what  we try  to  do  is,  we basically  try  to  have  efficient

implementations of point multiplication or scalar multiplication. And therefore, right if

you can I mean if you when you are going in to hardware design right we always look

for opportunities of parallelism.

So, that is the inherent or one of the important you know like selling points of hardware

design over software. So therefore, right I mean we would like to of course, parallelize,

but whether we can parallelize is always constrained by the amount of resource that we

have at hand ok.



(Refer Slide Time: 02:03)

So therefore, right let us look into or have a quick look into the Montgomery structure

where we essentially had a point doubling and a point addition. So, these are the point

doubling and the point addition equations actually ok. So, now if you observe that I have

tried to give potential parallel strategies for scalar point multiplication depending upon

the fact or assumption that suppose you have got 1 multiplier or 2 multiplier resource at

hand ok. Because, multiplier the typically quite consuming in terms of resources.

So therefore, right if we say for example, that our architecture can support 1 multiplier

then we easily see that the point doubling operation essentially will require you know

like  you  can  essentially  perform  them  in  this  in  the  cycle.  For  example,  you  can

essentially  implement  them  using  you  know  like;  so,  these  are  the  equations.  So

therefore, this is the multiplier for example, where you are computing Z 2 which is equal

to T into Z 1 square. So, there you are basically expending this multiplier ok. 

Likewise right if you see the point addition equation in the point addition you see that I

have got 2 multiplications, like for t 1 I have got one multiplication and for t 2, I have got

1 multiplication ok. Likewise for cycle 1 a there is no multiplication ok, but for cycle 2 I

have got again 1 multiplication required. So therefore, right I mean the whole idea is that

depending upon the,  we again assume that  the squaring and the multiplications  with

constants  can  be  performed  without  any  multiplications  or  without  any  explicit

multipliers ok.



(Refer Slide Time: 03:47)

So therefore, right I mean with this with these equations in mind and with this kind of

computations  required  for  doubling  and  addition  let  us  try  to  see  that  how we  can

parallelize the Montgomery algorithm. So, in Montgomery algorithm if you remember

this was your scalar k and then you essentially initialized X 1 and Z 1 because, you do

not operate on y coordinates here. So, you have got and you are doing on projective

coordinate. So, you need the X and Z coordinates and for X 2 it is a doubled result.

So therefore, these are the corresponding doubled equations. So, if k i is equal to 1 you

basically run an iterative algorithm from l minus 2 known to 0. So, this is the msb first

algorithm, you basically add in X 1 Z 1 and X 2 Z 2 if the k i is 1. And, you double X 2 Z

2 and if it if k i is equal to 0 then you do the opposite; that means, you add X 2 Z 2 with

X 1 Z 1, but you double X 1 Z X 1 Z 1 ok. 

And finally, the result is X 1 Y 1 X 2 Y 2, but from using that you finally, you know want

to return the result back to affine coordinate. So, you make a transformation from the

projective coordinates back to the affine coordinates. So therefore, right what we have

written as a part of step 5, there are 5 steps are 5 a and 5 b. So, either that you are doing 5

a or you are doing 5 b operations ok. 
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So therefore,  now what we are trying to do is we are trying to parallelize this point

multiplication operation. And, the let see how are what we can do.

(Refer Slide Time: 05:07)

So,  therefore,  right  so,  there  are  these  are  the  2  corresponding  strategies  that  we

mentioned. Suppose if we allocate one multiplier to each of the Madd and M Mdouble.

That means, suppose you have got 2 multipliers and you allocate one multiplier each to

Madd and Mdouble ok, then you can parallelize steps 5 a and 5 b. Because, now you can

you know like do this addition operation and double operation in parallel because, you



have attributed one multiplier to the, to addition and one addition one multiplication one

multiplier to the doubling operation ok.

So therefore, right if you if you do that then you see that 4 clock cycles are required for

each iteration ok. So, so therefore, right I mean so, so that means, the total time which is

required is nearly 4 l I mean this nearly 4 l. So therefore, right I mean the, this is about

the time that your algorithm we will take ok. On the other hand if you can parallelize the

underlying Madd and Mdouble then we cannot parallelize level 1 ok. So, thus we if we

have a constraint of 2 multipliers ok; so, we have a sequential step 5 a and 5 b. So now,

the total time will be 3 l actually ok.

(Refer Slide Time: 06:31)

So so, therefore, right I mean you see that depending upon what parallel strategies you

have you essentially I mean you know like you have got 2 alternatives ok. So, but on the

other hand if you can parallelize both the levels; that means, level 1 and level 2 then you

can actually reduce this time to 2 l clock cycles ok. You can reduce it to 2 l clock cycles,

but this will required 3 multipliers now ok. So, you see that the more resources you can

expand, you can actually parallelize the Montgomery ladder quite significantly ok. And,

that is why right we conclude the Montgomery algorithm is highly parallelizable ok.

And, it is helpful in high performance designs and also right for low power and high

throughput both kinds of you know like applications. Because, on one hand right you

essentially can have probably resource constant environments where, you essentially can



still perform Montgomery ladder reasonably well even with say 1 multiplier cost ok. On

the  other  hand  you  can  also  go  for  quite  high  throughput  designs  actually  ok.  So

therefore, all depends upon how much resource you have, but the point is right that the

Montgomery algorithm has copes of parallelism. And therefore, you can try to capitalize

on that ok.

(Refer Slide Time: 07:33)

So, now with this background we are essentially you know like we let us look into a

possible case study where, we would like to design ECC processor and these are the

corresponding parameters of this design. So, this design is on GF 2 power of 233 which

is essentially one of the fifth standards for elliptic curves in characteristic 2 fields. So, the

curve is a random curve of this equation y square plus x y equal to x cube plus a x square

plus b where a is equal to 1 ok. But, you can see that according to the fifth standard

which you can also look into the nist corresponding website ok. You will see that the

base points like the p for example, that we were talking about essentially are 233 bit

constants ok.

So, here are just an example just to show you how it looks like. So, you see it is pretty

you know like big number. So, you basically I have to do a arithmetic and computations

in such kind of supporting such kind of large arguments. So, the constant b for the curve

is again you know like given in fifth standard and this is essentially  shown here ok.



These are just for the sake of complete test try to give us an idea about how the constants

look like ok. 

(Refer Slide Time: 08:45)

So, now we would like to essentially develop this elliptic curve design, again with this is

our hierarchy we want to implement the scalar multiplication, but you have to start from

the bottom. Because, you have to implement all of this multiplication and you know like

the field operations and then the doubling and addition operation and finally, the scalar

multiplication right. So, this is the elliptic curve hierarchy ok.

(Refer Slide Time: 09:07)



And if you look into the code hierarchy; so, you will be try to give you some indications

about potentially how we can write for example, in RTL code. So, I will using Verilog,

but  you  can  easily  generalized  it  to  other  RTL  languages  ok.  So,  so  little  bit  of

background on Verilog would be handy here and though not much in not much did not in

much details. 

So for example, like the for the field operation as you can see that the basic blocks are

multiplier  squared and a quad block ok. So, if you remember in one of our previous

lectures light we have been discussing about how to realize these architectures where, we

had looked into the Karatsuba multiplier. Where, we have seen the squarer architecture

like how we can do squaring in characteristic 2 fields and also how you can do quading

and what are the advantages of doing that in a fpj topologies ok.

So, now we would like to build upon a top architecture using these components and

finally, right the computations will be done or accumulated are done in an arithmetic

logic unit. So, this is the elliptic curve logic unit or alu and there is a corresponding

register bank which essentially is kind of stores temporary data, also takes initial data

like the constants are loaded into the register bank and all the computations are done kind

of; so, it is like a scratch pad.

They where you are basically doing your computations and kind of storing storing the

temporary result and finally, all of these are kind of combine into a scalar multiplication.

This is your top level module or ecsmul where you are essentially you know like taking

the input that is the corresponding you know like key and based upon that you are doing

your scalar multiplication. And finally, when the result is done then you essentially get a

done signal to flag that the result or the computation is complete ok. 
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So, now let us look into the processor overview. So, here are the 4 important components

of my design. So, I have got as I said that the register bank and the arithmetic unit which

are kind of  handshaking with each other. The register  bank is  essentially  stored;  so,

storing temporary data and the ROM essentially stores the curve constant and the base

point. So, if this stores you know like the p x p y and also the base point that this is the

base point and also the curve constant. So, A is equal to 1 in this curve, but B essentially

has a non-trivial value which is stored in the ROM ok. 

So, this data essentially is sometimes pass to the register bank or the register bank also

take  data  from  the  arithmetic  unit;  that  means,  the  arithmetic  units  perform  some

computations. And, then stores the result back to the register bank ok. Now, the register

bank and the arithmetic unit also does handshaking with each other. So; that means, like

the when the arithmetic unit required some data, it essentially looks into the register bank

that  is  a  scratch  pad  and  from  there  it  gets  temporary  results  to  do  to  do  further

computations. 

But, then the entire you know like ring leader sort of or you know the controller is the

control unit with basically essentially performs or performs the rather sequences the field

operation ok. Like the whatever operations will be perform the sequences in which they

will be performed. So, that decision is done or made by the controller or the control unit

ok.



So, roughly speaking as I said previously also it is very important to understand the data

path  and  the  control  path  of  your  design.  So,  this  control  unit  is  your  control  path

whereas, this essentially comprises of your data path of the circuit ok. So, we essentially

have return you know like individual Verilog codes for all of them. For example, the

register  bank  is  being  written  as  the  regbank  dot  v  and  the  arithmetic  unit  as  ec

underscore alu dot v and the controller using another Verilog file ok. So, all of them have

been built in a modular fashion. 

(Refer Slide Time: 12:53)

So, now let us look into the register bank. So, in the register bank which is in the heart of

you know like the design. So, the essentially the so, there are basically like 8 registers

each of size 233 bits. Because, my arguments are of size 233 bits, they are organized as 3

backs and there are implemented as dual port distributed RAMs which are present in the

Xilinx FPGAs ok. But, pretty much you can find similar constructs in other architecture

or other platforms as well ok. 

So, the main characteristic of this memory bank is that the for example, if you look into

this architecture and you see the RA 1 which is essentially one of the banks, you see that

there is a corresponding address ok. And, you essentially can perform and you know like

asynchronous write I mean you can perform and asynchronous read and a synchronous

write. That means, with the clock you can essentially set or enable you know like the



write  signal  here  which  is  a  w  E  signal  and  you  can  actually  you  know  like  flag

corresponding address and you can write into that address synchronously with the clock.

But you can also read. So, you can essentially read at any time; that means, a read is

always enabled, but from where you want to read for that there is another address ok. So,

you essentially have got an address 2. So, you will see that there is an address 1 typically

which  is  for  writing  an  address  2  which  your  using  for  reading  ok.  So,  there  are

essentially the because you essentially; so, this is a dual port RAM. So, you can you

know like right in to a different location and you can read from a different location. So,

that essentially provision is provided here ok.

So, you can and you can observe that you can essentially read 2 data, but you can write

into 1 1 address. So, likewise right if you see that in the register bank there are like 3

important registers RA 1 RA 2 and RC 1 or other RA I would say other RA RB and RC.

The reason why we have got 3 register banks is because we are doing are computation in

projective coordinates. So, we have got x y and z ok. So, RA is essentially used for

processing the x components whereas, this is for the y components and this is this is for

the z components ok. So, what so if you read this table you will see that we kind of detail

about the functionalities of each of these registers in a very high level in a very high

level. 

So  for  example,  RA 1  is  used  during  initialization  it  is  loaded  with  P  x  that  is  x

coordinate of the base point. You it stores the x coordinate of the result ok that is the

intermediate  results  when  you  are  doing  you  are  computation.  It  is  also  used  for

temporary storage ok. RA 2 is used for storing P x ok. RB 1 is used for you know the

during initialization it is loaded with P y and it also stores the y coordinate of the result

and is also used for temporary storage. RB 2 is used for storing P y, RB 3 is also another

registered which we use for temporary storage and RB 4 stores the curve constant which

is small b ok. 

So, you take from the RAM and you store it in RB 4 for you know like faster access. And

RC 1 essentially stores the z coordinates. So, you remember like initialize we initialize

the z coordinate with 1. So, you basically initialize it and set it to 1 and you store the z

coordinate of the projective result and you also store and it is also used for temporary



storage  ok.  So,  RC  2  is  again  temporary  register  which  we  essentially  use  in  our

architecture ok.

So, another point which we will see later on is that this computation takes place in mixed

coordinate; that mean you know like one of the coordinates is in projective domain and

the other one is in affine domain. So, with this background we have more or less we have

understood how or what are the functionalities of each of these registers. You see that

there are some output ports and input ports for example, the output ports are A 0 A 1 A 2

A 3 and also Q in ok. So, these bosses these are bosses ok; that means, these are wide

you know like n bit data which is being passed.

So, this data passes from the register bank and goes to the Arithmetic Logic Unit or the

ALU and there are some inputs like C 0 C 1 and Q out. So, these inputs are the outputs

of the arithmetic logic unit ok. So, they are essentially taken from the arithmetic logic

unit and feedback into my register file ok. 

(Refer Slide Time: 17:29)

So, this is a potential Verilog design of the register bank and if you can see that this is the

module  of  the  register  bank.  In  particular  I  would  like  to  highlight  few  things  for

example;  I  would  like  to  highlight  the  hierarchy  here.  So,  you  can  see  and  easily

understand this part that is there is clock of course, which because there is a synchronous

event which is taking place as I said that the write is synchronous. There is a, you know

like part of the control word which is used. So, the control word is essentially divided



into 2 parts: one is a lower part and the one is higher part. So, the higher part is integrator

cwh ok. There there are inputs like c 0 and c 1 which are essentially inputs which are

received and there are outputs like a 0, a 1, a 2 and a 3 ok.

Another important point which may be observed is that how we have instantiated the

distributed memory. So, these are you know like the 3 components are register bank RA

RB and RC. So therefore, we have got 3 instantiations of the register bank ok. Again this

is a particular instantiation which was which was done on a vortex 4 kind of environment

for  a  different  platform  platform  we  have  to  look  into  what  exactly  the  module

description should be ok. So, there are 3 register bank register bank 1 register bank 2 and

register bank 3. 

All of them have got din which is the data input which gets in. There is there are 2

addresses address 1 and address 2 as I mention address 1 is used for writing and address

2 is used for reading. There is a write enable because, the writing cannot be done always,

it has to be synchronous with the clock. But, the reading can be done always and there

are 2 read ports like dout 1 and dout 2 for each of these register banks ok. 

(Refer Slide Time: 19:05)

So therefore, right I mean with this background right you can see that there are of course,

more descriptions depending upon you know like I mean essentially this is nothing, but

descriptions about based upon the architecture. So, if you see this architecture; so, based

upon that these are you know like corresponding Verilog code which has been written to



describe the hardware essentially of the register bank ok. For example, like you can see

that you know like how this a0 to a3 are fed to the ALU.

So, that you can see that there are essentially these are nothing, but multiplexers and the

multiplexers has been written using an assign statement in Verilog ok. So, these are the

descriptions of these multiplexers ok. So, the so, likewise you can essentially realize the

entire register bank unit and the other important component is the arithmetic logic unit

for the elliptic curve processor.

(Refer Slide Time: 19:53)

So,  in  the  arithmetic  logic  unit  there  are  two  important  blocks:  one  is  the  hybrid

Karatsuba  multiplier,  but  the  inverse  is  not  a  monolithic  block,  but  rather  as  we

implemented using the quad block and the multiplier. So, if you remember like we are

different stages of the ethos uzi inversion algorithm. So, we try to implement the ethos

uzi inversion algorithm which uses the quad block as a fundamental block and along

with  the  multiplier.  The  multiplication  has  been  used  at  every  step  of  the  inversion

routine ok. 

Now, along with these along with these two things right there are some other peripherals

which  has  been  used  which  are  essentially  quit  efficient  in  terms  of  hardware.  For

example,  the  squarer  routines  and  also  the  XORs  for  example,  which  are  kind  of

essentially done the XOR is use for doing additions of the arguments ok. Now, why these

kind  of  units  are  like  A0,  A0 square  and so  on  will  be  probably  understood as  we



progress ok. But, this is kind of just to give an idea about how the arithmetic logic unit

looks like. 

(Refer Slide Time: 20:53)

So, let  us now try to understand what the arithmetic  logic unit  performs ok. So, the

arithmetic  logic  unit  performs  point  operations  like  doubling  and  addition  in  Lopez

Dahab projective coordinates in particular mix projective coordinates and there is a final

inversion from the projective coordinates to the affine coordinates. So, there are 2 phases

of the arithmetic unit ok. The arithmetic unit has got 5 inputs. So, these are denoted so,

these are the outputs of the register bank and 3 outputs which are in turn register inputs

of the register bank.

Now, the computation of the arithmetic unit has got 2 phases point addition and doubling

and the final inversion. And as I mention that the arithmetic unit consist of the hybrid

Karatsuba multiplier which is used at all time steps. Now, these an important part that we

kind of try to adhere in our scheduling. Since, the multiplier is very kind of costly we do

not want to keep the multiplier ideal at any clock cycle. So, basically every clock cycle

there is one multiplication which is monetarily performed. This is just to save the number

of clock cycles ok.

Likewise there is also a quad block which is used in phase 2 for the final inversion, when

you want to covert back from the projective coordinates to the affine coordinates. And,

the quad block if  you remember like  that  design that  we showed essentially  had 14



cascaded steps. So, each of these steps where like power 4 circuits; that means, which

[ basic/basically] takes an argument raise to the power of 4 ok. And, it computes the

quading repeatedly depending upon a particular or controller or select line. And, a select

line essentially has got bits from 26 27 28 20 29 so; that means, you know you have got

virtually 4 bits to implement that. 

So, so depending upon the, what value you set here what you compute is any input that

give to this quad to this quad block it is raise to the power of 4 to the power of select

actually. So that means, if we alpha is my input; input to the quad block and select is the

value of this select line then, what I compute or get as the result is alpha to the power of

4 to the power of select ok. So therefore, you basically kind of raise it accordingly ok. 

(Refer Slide Time: 23:05)

So, this is again you know like a Verilog description for the arithmetic logic unit nothing

must to see except that, you see that essentially the entire design has been done in a

structural way. So, we basically kind of you know like realize the squarer multiplications

and separate the (Refer Time: 23:18) separate Verilog codes and just instantiate in our

design. So, likewise the entire description has been given for the arithmetic logic unit. 
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So, now you have got a controller and the controller is essentially a hardwired unit ok;

that means it is essentially you know you can essentially change the control unit values

as well. So, it generates 33 control signals and you can kind of reprogram the control you

need  to  you  know  like  for  other  kind  of  operations  as  well.  So,  it  is  kind  of

programmable and the so, the objective of this control signals is basically try to kind of

determine the flow of data ok. For example, you know like c 0 to c 9, this like one part of

the controller. It with controls the input to the multiplier and the output C 0 and C 1 of

the arithmetic unit ok.

So, essentially it compute it controls the input to your multiplier that is hybrid Karatsuba

multiplier and the output C 0 and C 1 of the control unit. And, there as I said the c 26 to c

29 is the select line of the multiplexers which is used as an input to the quad block ok.

The remaining control lines; that means, out of the 33 control lines the remaining control

lines they are used for read and write of the registers in the register file ok. That means,

there are used to control which registered you want to read, I mean write and from where

you want to read ok. 
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So, so they let us now look into you know like you not to understand the arithmetic unit

better, let us try to look into the corresponding computations ok. For example, let us try

to look into the projective point arithmetic unit. So, here these are my computations. So,

if you remember like we essentially described about how to perform point doubling and

we also saw how we can convert the point doubling into projective domain ok. So, you

can see so, leave it to as an exercise to kind of check for doubling which is which is

relatively easy. And, you know like these are the corresponding computations which we

perform ok.

So, now what we would like to do as I said is you have to schedule these operations ok.

So,  these  are  the  fundamental  blocks  which  you  have  to  schedule  ok.  There  is  a

restriction, restriction is that you have got 1 multiplier at hand because, if you remember

in the arithmetic unit there is only one Karatsuba multiplier. So, how many clock cycles

would you required to implement this. So, you see that there are 4 clock cycles which

have been expended and apparently you cannot do lesser than that ok. So, so now, we

will  try  to  understand  you  know  like  what  or  how  or  what  are  the  time  steps  of

performing this.



(Refer Slide Time: 26:01)

So this is the description of the point a projective point doubling sequence ok. So, you

see that these are the 4 clock cycles which are required and this is my corresponding

computation which is being performed ok. So, if you observe carefully you will see that

this is the parallel architecture for performing the doubling or point doubling ok. So, in

particular you see that as I said that in the arithmetic unit there are 2 output block C 0

and C 1. So, you can essentially kind of compute C 0 and C 1 in a parallel manner ok. 

So, you see that in C 0 here I use the multiplier ok. So, now RA 1 and RC 1 essentially

are inputs which are received from the register file ok. And RA 1 is nothing, but you

know like  your X 1 and RC 1 is  essentially  you know your corresponding Z 1.  So

therefore, right when you are computing this RC 1 which is your output. So therefore,

what happens is that if you see that the input to this arithmetic unit is A 0.

So, A 0 essentially will have RA 1 and therefore right so, this will come here, this will

come here as an input. And, the other input is A 1 ok, but what I choose in this as an

input to this multiplexer is determine by the select line and by the select line which are

coming from my control unit ok. So, what I choose is this line. So, what basically what I

do is I choose this I choose this corresponding inputs that is my A 0 square ok. So that

means,  I  compute  RA 1 square  in  this  way and for  this  multiplexer  or  through this

multiplexer I choose this line that is A 1 square ok. So, I choose A 1 square here and I

choose A 0 square here as inputs ok.



So, now this gets passed into this multiplier and therefore, these multiplier multipliers

RA 1 square and RC 1 square as a result ok. In parallel you also calculate RC 1 to the

power of 4. So, you see that already in my circuit there are some squarings which have

been provided. So therefore, what I can do is I can take for example, A 1 which has got

RC 1 now. So, this RC 1 comes over here and this is my RC 1 to the power of 4 because,

it passes through 2 squaring circuits ok.

So, now this essentially is my you know like is also you know like something which I

also; so, so the C 0 port is used to transfer the output of the multiplier whereas, the C 1

port is used to pass this corresponding result which is A 1 to the power of 4 ok. So, this A

1 to the power of 4 is now pass to this C 1 which means you also have this data ready in

the  same clock  cycle  ok.  Likewise  if  you see  right  so,  the  now you have  basically

computed in the first clock cycle this component and you also have calculated in this Z 1

to the power of 4 in the same clock cycle ok. In the second clock cycle what you do is

you multiply you know like RB 3 which is your Z to the power of 4 with RB 4. And what

is RB 4? RB 4 for was used to store the constant b ok.

So therefore, right you basically get b and you multiply b with Z 1 to the power of 4 and

here you essentially compute that, that corresponding result ok. So, likewise you know

you also need to calculate Y 4 and you see that the computation of Y 4 has got few

multiplication like it has got more than one multiplications which are which are present.

So therefore, right for this computation we require more than 1 clock cycles ok. 

So, what we do now is that we first you know like in 1 clock cycle we compute this part

which is your RC 1 plus RB 1 square plus RB 3 ok, which essentially is computing this

part. Remember A A is equal to 1 in this design and the other part RA 1 right is nothing,

but you know like is computing you are RA 1 to the power of 4 plus RB 3. So, that

essentially computes your this plus ok, this addition gets computed.

So, now in the set in the final clock cycle that is the fourth clock cycle you basically add

this component and you essentially get the corresponding result ok. So, you see that you

need  4  clock  cycles  to  do  this  computation.  And,  if  you  understand  right  how this

computation has been taking place you also know how the control signals should be

generated in time steps and so, that we can perform the doublings operation ok. 



So, let me stop here and in the next class right we will be continuing about and see how

we can perform the addition operation ok.


